Jason sample event log from the R/V Atlantis (Alvin AT29-04) cruise in the Blake Ridge Diapir, Cape Fear Diapir, and the United States Western Atlantic Margin during July 2015 (SEEPC project)

Website: https://www.bco-dmo.org/dataset/615127
Version: 2015-10-06

Project
» Connectivity in western Atlantic seep populations: Oceanographic and life-history processes underlying genetic structure (SEEPC)
ContributorsAffiliationRole
Van Dover, CindyDuke UniversityPrincipal Investigator
Copley, NancyWoods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager


Dataset Description


Methods & Sampling

Sampling was performed by HOV Alvin in the Gulf of Mexico using the following methods:
- Grab - using the claw of either port or starboard manipulator to pick up the sample
- Push core - used to collect sediment core samples, or invertebrates residing in the sediment
- Slurp - use of a vacuum system to collect sample from the seafloor or water column


Data Processing Description

BCO-DMO Processing:

- replaced blanks with underscores, except for comments column
- removed hyphens from site names


[ table of contents | back to top ]

Data Files

File
AT2904_dive_log.csv
(Comma Separated Values (.csv), 1.05 KB)
MD5:c96266e8bf80adca0f781a3b239535d4
Primary data file for dataset ID 615127

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
dive_idunique ID for each Alvin dive unitless
datesampling date YYYYMMDD
siteID associated with particular geographic location/region unitless
latlatitude (North is positive; South is negative) decimal degrees
lonlongitude (East is positive; West is negative) decimal degrees
depthdepth below surface meters
commentsfree text comments unitless

[ table of contents | back to top ]

Deployments

AT29-04

Website
Platform
R/V Atlantis
Report
Start Date
2015-07-08
End Date
2015-07-28
Description
Science objectives (from the WHOI Cruise Planning Synopsis): The primary objective of the SeepC Project is to advance our general knowledge of connectivity in the deep sea using taxa found at seeps as model systems. The focus is on species and processes occurring in the Intra-American Sea (including the Caribbean, Gulf of Mexico, and eastern seaboard of the US), with attention to oceanographic circulation, life histories, and genetics. Questions that apply in shallow-water systems motivate this study: What phylogeographic breaks occur in the system? It is important to distinguish between phylogeography and connectivity. A phylogeographic break implies a long history of isolation or possibly cryptic speciation, while genetic population structure indicates gene flow is reduced, but still ongoing or recent. Do collections from different sites indicate a panmictic population of a given species? This is the fundamental question about connectivity and the scale of population genetic variation in marine species with planktonic larvae and it comprises extent of gene flow, directionality, and relative contributions. What bio-physical processes underlie observed connectivities? Biological processes (e.g., larval distributions in the water column, timing of reproduction, and planktonic larval duration) and physical processes of transport and dispersion interact to determine connectivity. Our efforts include improving the oceanographic model for the IAS near the seabed using current data from moorings at several depths and locations and coupling this model to a Lagrangian larval transport model. We stress the importance of iterative interactions among the science teams to advance our understanding of connectivity in the deep sea through descriptive and hypothesis-driven research. We will develop effective and best methods for hypothesis testing under the constraints of working in a relatively inaccessible environment and will build capacity in understanding connectivity in deep-sea systems. Science Activities: 1) Two mooring recoveries; 2) Alvin seep sampling: mussels, clams, tubeworms, and associated animals; targeting at least 30 individuals per species (manips, net, slurp); carbonates; 3) Sentry plankton sampling; 4) MOCNESS tows; 5) Sentry high-resolution mapping; 6) CTD casts; 7) XBTs; 8) Shipboard acoustics (methane plumes). BCO-DMO Note: Using Alvin dive positions for mapserver until full cruise track becomes available on rvdata.us.

AT29-04_Alvin_Dives

Website
Platform
Alvin
Start Date
2015-07-09
End Date
2015-07-27
Description
Alvin dives for SEEPC project


[ table of contents | back to top ]

Project Information

Connectivity in western Atlantic seep populations: Oceanographic and life-history processes underlying genetic structure (SEEPC)

Coverage: Western Atlantic, Gulf of Mexico, Intra-American Sea


This project will evaluate connectivity on spatial scales that match those at which vent systems are being studied (3500 km), with a set of nested seeps (within the Barbados system) within which connectivity can be explored at more local spatial scales (30 to 130 km), and with species that span depth (600 m to 3600 m) and geographic ranges (30 km to 3500 km) and that have diverse life-history characteristics.  Five deep-sea seep systems in the Intra- American Sea (IAS) are targeted: Blake Ridge, Florida Escarpment, Alaminos Canyon, Brine Pool, Barbados (El Pilar, Orenoque A, Orenoque B). The primary objective is to advance our general knowledge of connectivity in the deep sea. The focus is on species and processes occurring in the IAS, with attention to oceanographic circulation, life histories, and genetics. Questions that apply in shallow-water systems motivate this study:

1. What phylogeographic breaks occur in the system? It is important to distinguish between phylogeographic history and connectivity. A phylogeographic break with no shared alleles between populations implies a long history of isolation or possibly cryptic speciation.

2. Are populations connected by ongoing migration? This is the fundamental question about connectivity and the scale of genetic variation in marine species with planktonic larvae.

3. What biophysical processes underlie observed connectivities? Biological processes (e.g., larval distributions in the water column, timing of reproduction, and planktonic larval duration) and physical processes of transport and dispersion interact to determine connectivity.

The oceanographic model for the IAS will be improved and coupled to a Lagrangian larval transport model. The field program includes time-series sampling of larvae at seeps with records of current velocities, water column sampling to determine larval distribution potential, shipboard studies of larval biology and behavior, and sampling of benthic target species. Phylogenetic and population genetic tools will be used to explore historical and contemporary gene flow. Iterative interactions among the science teams will advance our understanding of connectivity in the deep sea and to develop effective and best methods for hypothesis testing under the constraints of working in a relatively inaccessible environment. Since their discovery, deep-sea chemosynthetic ecosystems have been novel systems within which to test the generality of paradigms developed for shallow-water species. This study will explore scale-dependent biodiversity and recruitment dynamics in deep-sea seep communities, and will identify key factors underlying population persistence and maintenance of biodiversity in these patchy systems.

Google Earth map showing positions of stations, CTD, XBT, multibeam locations (KMZ file dlownload)



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]