Deployment: RR2004

Deployment: 
RR2004
DOI: 
10.7284/908891
Rolling Deck to Repository (R2R) Program
Chief Scientist: 
Synonyms: 
SAMW
Platform Type:
 vessel
Start Date: 
2020-12-26
End Date: 
2021-02-23
Location: 
Pacific Sector of the Southern Ocean along 150W
Description

See more information at R2R: https://www.rvdata.us/search/cruise/RR2004

Description of Cruise (provided by Chief Scientist Barney Balch):
This cruise departed Honolulu, Hawaii on 26 December 2020 (following two weeks of strict quarantine/isolation for Covid plus 4 days of loading of the ship within the Revelle's Covid "bubble"). The ship transited south along the great circle route from Honolulu to 30°S x 150°W. We targeted this meridian for several reasons. First, Sub-Antarctic Mode Water (SAMW) is formed in the Southern Ocean at high rates in the vicinity of this meridian (Cerovečki et al., 2013). This water is subsequently subducted and gets carried northward at depths of 500-700 meters (m), where it is brought closer to the surface in about 40 years' time in the equatorial regions, influencing the productivity of these waters as well as those further into the northern hemisphere (Sarmiento et al., 2004). Second, ocean color satellite data over the last 23 years has shown elevated reflectance from the Great Calcite Belt between the latitudes of 40°S to 50°S but this region is extremely remote and few actual observations exist to confirm this (Balch et al., 2016). Third, ocean color imagery has also revealed regions of elevated coccolithophore-like reflectance further south than 50°S latitude along this meridian, but these waters have temperatures well below the preferred temperature range of the common coccolithophore species of the Southern Ocean, Emiliana huxleyi, hence we suspected another particle type likely is responsible. There is strong topographic steering of the currents along the subantarctic front, the polar front, and the southern Antarctic Circumpolar current by the Pacific Antarctic Ridge and its associated Udintsev and Eltanin Fracture Zones. Fourth, this region has elevated frequencies of eddy formation, with trapped high-reflectance waters, which provide opportunities to follow these semi-enclosed parcels and their trapped populations in space and time. A meridional transect along 150°W provided an opportunity to track the formation of SAMW and its age using Freon measurements (to be performed ashore by the laboratory of Dr. Rana Fine (Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL) (Fine, 1993, 2011; Fine et al., 2002; Fine et al., 2008). Knowing the age of SAMW allows determination of the rates that SAMW is being conditioned by diatoms, coccolithophores, and other classes of phytoplankton on its trek to the north.

We began the meridional transect (with CTD casts at 0.5° latitude resolution at 30°S-47°S), and we switched to a higher resolution of sampling from 47°S to 60°S (so-called "enhanced" meridional transect at 0.33° latitude resolution), plus the addition of Video Plankton Recorder (VPR) tows, in order to better define mesoscale features that we encountered (with both satellite and ship data) along the 150°W meridian. The enhanced meridional transect was done in 180-240 nautical mile segments along 150°W, which allowed for more flexible scheduling of the VPR transects during good weather days, allowing safer VPR deployment and recovery, whereas the CTD stations could be performed safely on the many more inclement days with higher sea states when the VPR could not be deployed safely. Five carboy experiments were performed during the trip to investigate factors limiting to the phytoplankton production.

After completion of the meridional transect (both reduced-resolution and enhanced resolution), we headed east for the first crossing of the polar front which was shown through altimetry to be topographically-steered through the Udintsev Fracture Zone. Moreover, satellite remote sensing of this feature showed it to be of high reflectance. After crossing the Polar Front the first time, we surveyed a mesoscale eddy that contained waters with elevated reflectance around the edge (hereafter referred to as "Eddy A") performing two radial surveys with complete VPR and hydrographic sections. Two productivity and trace-metal casts were performed in Eddy A along with a carboy experiment, as well. The ship then transited south and east to perform a cross frontal VPR and hydrographic survey (which crossed the same polar frontal boundary crossed earlier during the meridional transect, as well as during the transit to Eddy A; this transect was called the "Cross Frontal Transect").

At this point of the cruise, French Polynesia announced that the ports in Tahiti would be closed for the ship to disembark scientists at the end of February. This meant that the ship would have to return to Honolulu at cruise end, which, in turn, meant that we would lose about one week of science time for the long transit back to Honolulu. Therefore, we devised a streamlined cruise plan for the remainder of the cruise in order to achieve all of our objectives. The ship then visited a small mesoscale eddy (Eddy C) which contained a highly focused, high-reflectance core that we had observed in satellite imagery for several weeks. We performed one VPR tow and one hydrographic survey along one diameter across the small eddy and left Eddy C with VPR in tow, to do a repeat crossing of Eddy A, then onward to a high-reflectance meander of the SubAntarctic Front for collection of water for the fourth experiment and documentation of the conditions of the SAF. We then headed for the portion of the meridional survey where we had seen low levels of coccolithophores three weeks prior. This region had remained cloud-covered for weeks, thus we had little idea of what awaited us. Shortly after leaving the Meander station, the estimates of acid-labile backscattering (an optical proxy for PIC) began rising and for the next 400 nautical miles saw PIC concentrations three times higher than anything we had seen previously along the 150°W meridian (or elsewhere for that matter).

References:
Fine, R. A. (2011), Observations of CFCs and SF 6 as ocean tracers, Annual Review of Marine Science, 3, 173-195, doi:10.1146/annurev.marine.010908.163933.