%,

on e in
Doce. Li \nm\l

%

TECHNICAL REPORT

The Warm Core Rings Database Routines

Glenn R, Flierl
54-1422 M,I.T.
Cambridge, MA 02139

(617) 253-4692

Preface:

Given the huge number of (expensive) commerical database software

packages around, why write our own routines? My answers are:

1) The warm core rings group works on a wide range of computers. Often the
data will be prepared on one’s own microcomputer and finally archived on the
WHOI VAX It would be very advantageous for data to be not only in a common
format but also to be manipulated with twin programs on the various machines.
Currently, we have functionally identical database routines on Commodore, NEC
(cpPM-86), os1, PDPL1-RSX11M and VAX~VMS with Apple software being prepared. I
believe that the ability to use the same procedure locally with small data
sets on micros or remoteiy with the full set on the VAX will make these

routines much more useful and data exchange much easier,

2) Many of our ‘operations which meld various data sets will involve
interpolating one data set (such as CTD or other high resolution measurements)
upon the locations of another data set {e.g. bottle depths). This is not a

common function,

3) It is now possible and fairly easy to add mew capabilities such as in-line
computations of (r,@): by writing our own routines we can modify and extend

them in any direction judged useful by the group as a whole.

4) Time was becoming critical and WHOI did not seem to be moving towards a
commercial system. The routines described herein are working now (with some

bugs, I presumel.

1. Introduction

The Warm Core Rings Database (WCRDB) is a "relational” data base, meaning
that all data is treated as tables of numbers; for example, figure 1.l shows

the table *CTDKNQ93,01,

The header for each column (8 character limit on the VAX) is stored with
the table and serves to identify visually the data in that column. The data
must be numeric; values such as -399 can be used to identify missing data

items.

Data may be stored either in the user’s own workspace or in the WCR data
archive. Data tables from the archive are referenced by prefixing a * to
the filename. (On the VAX, archive files are in the <WCRDB> area; on micros,
archives are on the 2nd disk drive.) Data can be read from either source but
writing is only possible in the user’s own area. Data will be moved into the

archive by request.

There are two forms of storage of data on disk, called either a “file" or
a "pseudofile". A "file" just contains headers and data in a simple format;
the first line has the number of columns (NC), the next NC lines have the
table headings, the following groups of NC lines contain successive rows of

the table. All data is in ASCII readable format. (See Appendix 1,)

A "pseudofile" appears to the user to be idemtical in style (for example

KNCTDL,TMP figure l.2), but in reality does not contain the data itself.

¥ CTD KN 093. 01

SIGTH

25,8500
26,1500
26.2500
26.2900
26,3300
26. 4100
26.5100
26.5300
26.5500
26.5700
26.5900
26.6100
26.6300
26.6500
26.6700
26.6900
26.7100
26,7300
26.7500
26,7700
26.7900
26.8100

26.8300.

26.8500
26,8700
26,8900
26.9100
26,9300
26,9500
26,9700
27.0100
27.0300
27.0500
27.0900
27.1100
27,1300
27.1500
27.1700
27.1900
27,2100
27,2300
27.2500
27.2700
27.2900
27.3100
27,3300
27.3500
27.3700
27.3900
27,4100
27.4300
27. 4500
27.4700
27.4900
27.5100
27,5300

PRES

3.
6.
9.
1.
13.
15.
17.
19,
23.
27.
29,
31
34,
39.
43,
45.
50.
56.
60.
70,
83.
93.
102,
109.
114,
121
128.
134
142.
150,
155
LEO.
168.
178,
187.
194.
202.
208,
215,
222.
227.
237.
250.
277
287.
296.
304,
3i3.
322.
330
337.
344.
359,
377,
395.

0000
0000
0000
0000
0000
0000
Q000
0000
0000
0000
0000

.0000

0000
0000
00400
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

L0000

0000

.0000

0000
0000

0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
€000
0000
0000

H

CEea iy

OO0

000
GO00
GioG0
3000
Q000

.C000

0000
0000
0000
0000
0000

TEMP

8.9270
B8.9190
9.0180
9.1080

9.1590

9.29%10
9.5130
9.6300
3.7810
9.9260
10.0460

10.1270

10.4010
10.4740
10.5370
10.7070
10.9440
11.1210

11.2910

11.4540
11.6160
11.7540
11.8550
11.9070
11.9030
11.9820
11.9700
11.9840
11,9970
11.5400
11.1700
11.0710
10.8680
10.7150
10.3710
10.1100

9.9470.

9.9140
9.9190
9.5770

9.4010.

9.2070
8.8760
ST
B.5320
8.3910
8.1440
7.9440
7.7660
7.6080
7.4110
7.2000
7.0020
6.7910
6.5830
6.4160

SAL

33
33

33.
24.
34.

34

34,
34.

34
34
34

34.
34,
34.

34

34.
34,
35.

35

35.
35.

35

35,
35.
35.
35.
35.
35.
35.
35.
35.
35,
35.
35.

35

35.
35.
35.
3S8.
35.

35

35.

e

P

35.
35.
35,

35.

35

35,
35.

35

35.

35

. 3660
. 7450
.8960
3640
0260
1630
.3210
3770
4350
-4980
.5450
.5820
6870
7140
7610
.8240
9070
9650
0320
.0950
1810
2170
.2690
3140
3300
3790
4010
4300
4660
3780
3230
3350
3160
3330
2760
L2470
2340
2490
278

2350
2200
. 2040
1710
1540
1450
1360
1200
1470
1000
L0210
G330
0720
0620
L0520
G410
.0350

02

7.
6.
6.
6.
6.
6.
6.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
4.
4.
4,
4,
4.
4.
4.
4.
3.
3.
3.
3.
3,
3.
3.
3.
3.
3.
3.
3.

€000
9300
8700
5900
3800
1900
1700
9900
8600
8200
7800
6800
5700
4600
300
5000
4300
4000
3200
2100
2200
1800
1000
9700
8400
7400
6100
4300
3300
1700
G400
8600
7500
6100
6300
6700
6500
5700
4900
4500
5300
5600
6000

FiGuere

DYNHGT

OO OO0 O

=R Rl Nl e Ne N ol oW o Wl « WS o QPO C>C*C>§>C:C»o SO0t o 0o

OOOOOOOOC}OOQ

L2060

L0120

.0180

L0210

0250

0280

L0310

.0340
.0400
.0460
L0490
.0520
0560
.0630
Q&R0
.0710
.0780
. 0860
.0810

1040

.1210
.1330
.1440
. 1530
1590
.1670
.1760
.1830
L1320
L2010
. 2060
L2120
L2200
. 2300
L2390
. 2460
. 2540
. 2590
. 2660
.2720
L2770
. 2860
L2970

A
Wiy

L3190
L3270
.3340
L5400
. 3470
L2530
.3590
. 3640
. 3690
.3780
. 3900
.4010

Iol

LETO0

27.5500 415.0000 6.3360 35.0450 4.5500 0.4130
27.5700 429.0000 6.1810 35.0490 4.6600 0.4210
27.5900 443.0000 6.0390 35.0470 4.7500 0.4290
27.6100 466.0000 5.8600 35.0460 4.8900 0.4410
27.6300 487.0000 5.6570 35.0370 5.0000 0.4530
27.6500 507.0000 5.5120 35.0350 5.0900 0.4630
27.6700 38,0000 5.3120 35.0320 5.2400 0.4780
27.6900 580.0000 5.0730 35.0230 5.4300 0.4980°
27.7100 644.0000 4.6910 34.9940 5.6700 0.5270
27.7300 755.1000 4.5170 34.9920 5.7800 0.5770
27.7500 926.9000 4.3590 34.9920 5.8500 0.6530
27.7700 1164.0000 4.1120 34.9820 5.9700 0.7570
27.7900 1403.0000 3.8990 34.9780 6.0100 0.8630
27.8100 1668.0000 3.7310 34.9780 6.0700 0.9790
27.8300 1909.2000 3.5500 34.9730 6.0800 1.0850
Flauee .2
SELECTED DATA
Ko cTD L, TMY Feom U

PRES TEMP SAL 2

102.0000 11.8550 35.2690 5.1000 oo £ PRESS & Z0O

109.0000 11.9070 . 35,3140 4.9700 -

114.0000 11.9030 35.3300 4.8400

121.0000 11.9820 35.3790 4.7400

128.0000 11.9700 35.4010 4.6100

134.0000 11.9840 35,4300 4.4300

142.0000 11.9970 35.4660 4.3300

150.0000 11.5400 35.3780 4.1700

155.0000 11.1600 35.3230. 4.0400

160.0000 11.07i0 35.3230 3.8€00

168.000C 10.8680 35.3160 3.7500

178.0000 10.7150 35.3330 3.6100

187.0000 10.3710 35.2760 3.6300

194.0060 10.1160 35,2470 2

Instead it contains instructions which tell the database routines how to
construct the file from other files. Thus the pseudofile which was printed in
figure 1.2 instructs the data base to select all data from *CTDKN093.1 which
is in the range 100 to 200 m and display only PRESS, TEMP, SAL, and 02,
Compare figures 1.1 and 1.2. A pseudofile exists on disk but only occupies a
small region, since it has instructions, not data. (For those interested,
pseudofile format is described in Appendix 2.) From the point of view of
applications programs {plotting, report-generastion, statistical manipulation),
a "pseudofile” is as real as a "file" (so long as the applicatioms programs
access data through the WCRDB subroutines). Figure 1.3 shows schematically

the structure we have just described.

The rest of this document will deseribe: (1) the types of manipulations
and combinations of data sets which are possible with the subroutines and (2)
the menu—driven package for setting up pseudofiles, ssving them on disk and

typing/printing/copying the resulting pseudotable.

. <WERDBS
or
sk |

RouvTivES

DBMENY

PACKAGE

ﬁl Qe PIES

~N
S0UUE S

2. Operations on files and pseudofiles

Operations will be discussed below in.terms of what happens to data from
a "source" or "sources". These may be either files on disk, pseudofiles on
disk or the results of preceding operations. There is no distinction among
these. For example one can take the data which appears to be in the
pseudofile KNCTDI.TMP and combine it with other data, e.g. nutrient data,
select out particular pressure levels and finally keep only temperature and
nitrate values. Conceptually, each operation produces a new pseudofile which
can then be used as source for succeeding operations; in actuality the final
file is comstructed one row at a time. So remember: a "source" could be any
of these three things interchangeably. In the examples below we will show
only a single step, giving both the source and the results of the operation

using made—up small-sized tables.
A) Selection by rows.

| The result table will contain only the rows from the source which satisfy
some (compound) criterion. For example, Figure 2.1 shows the source file and
the result of selecting only rows with 3 < DEPTH and DEPTH < 7. Each part of
the criteria is a comparison between the value in any column of the table
against any number, with the usual set of comparison operators. These parts
can then be combined using AND or OR to yield the full selection criterion.
For example one could choose EVNO = 1 OR EVNO = 3; 38 < LAT AND LAT < 39 AND

LONG > -69 AND LONG < ~68; or TEMP > 10 AND SAL < 35; etec.

A second row selection method involves interpolation based on one
particular column. All other columns are interpolated limearly based on the

rows which fall on either side of the desired value. Figure 2.2 shows this

EVNO DEETH TEMP SAL A
1 2 20.5 33.31 Fi&uRe !
1 5 19.8 33.34
1 10 18.2 33.45
2 3 21.2 33.55 SoU e
2 9 20.5 33.62
3 1 22.2 33.4
3 4 27.6 33. 44
3 i1 25.5 33.46

EVNO DEPTH TEMP SAL
1 5 19.8 33.34 o
3 4 27.6 33. 44 12551,-;1“‘

3< DEPTH « T

EVNO DEPTH TEMP SAL

1 2 20.5 33.31 .
1 5 19.8 33.34 Tlguees 2.2
1 10 18.2 33.45
2 3 21.2 33.55
2 g 20.5 33.62 SO U RCE
3 1 22.2 33.4
3 4 27.6 33. 44,
3 11 25.5 33.46

EVNO DEPTH TEMP SAL
1 5 19.8 33.34 . .

2 5 20.9666667 33.5733333 RESULT
3 5 27.3 33. 4428572

DEPTH ~vTERP. T &

process with interpolation of the same table to DEPTH of 5 meters. Because we
often group stations together, as in the source file shown, interpolation can
be done only on ascending or only on descending passes or at any crossing.t
means easily but not currently implemented — let me know if you need to do

it.) Figure 2.3 sketches the different results for selection, ascending
interpolation, descending interpolatidn and any crossing interpolation for the

value of 5.
B) Selection of columns.

Where selecting by rows picks out only particular horizontal swaths from
the table, selection by columns makes vertical swaths. Figure 2.4 shows an
example, selecting SAL and TEMP from the source. It is important to note that
the order of selection determines the ordering in the result table so that
columns can be easily reordered by this means if some program eXpects data in

a special column order.
C) Joining together several tabies.

For our program, the ability to meld together various data sets is
absolutely critical. Conceptually, one uses common information to put the two
sources together. The simplest case is in figure 2.5 where the EVNO and
DEPTH commonality has been used to join together the T-S and NO3 data. For
various data from the same bottles, this is the natural way of combining
information, uéing the agreéd*upon depth convention. Again a compound
criterion EVNO(1) = EVNO(2) and DEPTH(1) = DEPTH(2) has been used to choose
the matching. Both fields are in ascending order. (The order is critical
in deciding, if one table is missing a row, which of the two sources is the

one with the missing row.) If desired we could implement a join assuming

2iole 1.3

8
E4 _
DEYH [- P
S
b
3

4] &
z L
1 ®) ‘
0 "
1 i
i ' .
, Row # —
\5 gL e CT — : e e A 0 N
l N‘i—e P' — ; J SRR) W ' Pai
{ AsCEND) ; © , ¢ ‘ ~
LVTERP L . *‘
cDESCEND) o o e
INTERP T -
A -) O i o ‘
(ML) : , © T ©
. .
TLOINAS INCLUDED 1v PINAL ThgLE
U M DER VAR DS SELECT 3Y Row

TRUcESIES

EVNO DEPTH TEMP SAL EiG 2.4
1 2 20.5 33.31
i 5 19.8 33. 34
1 10 18.2 33.45 _
2 3 21.2 33.55 _
2 9 20.5 33.62 Sov RLE
3 1 22.2 33.4
3 4 27.6 33,44
3 11 25.5 33. 46
SAL TEMP
33.31 20.5
33.34 19.8
33.45 18.2 ResviT
33,55 21.2
3% 20-2 KeEeP SAL,Tgmp
33.44 27.6
33.46 25.5
‘-:ik:"«- 7“5"
. EVNO DEPTH NO3
L 2 1.5
1 5 1.6
1 10 2.7 ,
2 3 1.3 < -
2 5 1.4 DV RLE i
2 9 2.1
3 1 1
3 4 1.7
3 11 2.5
EVNO DEPTH TEMP SAL
1 2 20.5 33.31
1 5 19.8 33.34 S0URLE &
1 10 18.2 23.45
2 3 21.2 33.55
2 9 20.5 33.62
3 1 22.2 32.4
3 4 276 32. 44
3 11 25.5 33. 46
TR SAL NO3 DERTH _
20.5 133,31 1.5 2 Resvrr
1.8 33.34 1.6 5 o
~. 18.2 33.45 2.7 10 Joj~ BY
21.2 33.55 1.3 3
20.5 33.62 2.1 9 = BVNO 5. A =DEfM s
22.2 33.4 1]
27.6 33.44 1.7 4 CEE P
25.5 33.46 2.5 11

TEMP) Sk, NO3 DEFTH

that the second table could be missing data lines and that these should be
filled with ~999,% As the final part of the join process, there is a column
selection step to pick_from the two sources, The process is (hopefully)
exactly what you would do if someone handed you the two tables and said,

"Make me s new table containing TEMP SAL NO3 and DEPTH".

A second type of join operation involves interpolating ome data set (e.g.
from some high-resolution device like the CTD) to the levels of another
(e.g. bottles). Figure 2.6 shows an example of this process. The first
source file serves to specify the desired levels to be obtained by
interpolation from the second file. The issues about direction of
interpolation apply here also; the program is set up to handle situations
vhere the first file is (say) a set of stations of bottle depths at
increasing depths within a station while the second contains the data from
the same stations with increasing CTD depths, Flowcﬁ;rts in Appendix 3
describe selection procedures fully. All you need (I hope) to know ie that
cases like those in figure 2.7 can all be handled properly; misordering of

stations or use of only a few points could be troublesome.

The third type of join operation is designed for selecting data from a
list of statioms (or event numbers) or filling in a column of information such
as latitude/longitude from a source like the event logs. For the previous two
cases, at least one new line of data is read from the first source for each
line of the result. In contrast, for the fill-in join, new lines are read
from the first source only when the match no longer succeeds. The result,
then, includes a1l lines from the second source which match with one line from
the first. For example, figure 2.8 shows the process of selecting data from
particular stations. The first file contains a list of desired stations which

is matched against the station data to yield the result shown. As a second

T DEPTH

2
5
16

PRESS

Lo+ BENE RS Y FOR o

DEPTH

10

B b b O
~ o

TEMP
20.7
20.35
1%.82
19.12
18,58
8.1

=z
RO
Ll + * w

N O

Fi&. 2.6

Sou Ree |

SAL

33.3

33.33 SouRCE 2

33.33

33.38

33.43

33.46

TEMP SAL INTERD?. Jo¢ N
20.525 33.315%

19.82 33.33 NSO = -
18.34 33.445 - DEPM= PRESS

IKEEP DEPM Oy TEM P SAL

e e et s e e e b 0

PR
|

PorwTs

AT

pisi. OF
“Ociete DATA
DIST. oF s .
crd DATA o

\
T

6 o O @ gy Lo He P S R R

WHICH Rows witL coccu IN FoyveDd

SEL-STN
2
= 4
5
EUNO DEPTH
1 2
1 5
1 10
2 3
2 9
3 1
3 4
3 11
4 2
4 6
4 12
5 1
5 6
5 9
5 15
SEL-STN DEPTH
~ 2 3
2 9
4 2
4 6
4 12
5 1
5 6
5 9
5 15

SovRrcE |

TEMP
20.
1.
18,
21.
20.
22.
27,
25.
24.
23.
22.
25.

25

24,
23.

MDDV DN DG

N w

"TEMP

21.
20.
24.
23.
22.
25.

25

24.
23.

[5; Lol (CRR L IS I N

D

SAL

33.
33.
33.
33.
33.
33.
33.
33.
34.
.27
34,
34,
34.
34,
34.

34

SAL

33.
33.
34.
34.
.29
34,
34.
34.
34.

34

31
34
45
55

62

44
46
25

29
82
84

a8

55
62
25
27

82
B84

88

FilGure 2.8

SOVRCE Z

Resve T

Firee Jo,
P& CEMDIN (=

SEL-STN™ = EVMO

example, the positions from an event log (figure 2,9) are appended to all data

from the station using the "fill—in join" procedure.
D) Arithmetic operatiomns on columns

Certain operations for combining or modifying the information in selected
columns can be done with the data base subroutines. These routines also
permit extending the width of the table. As an example, figure 2.10 shows
creating a new column BIOMASS which is the sum of two other columms, Z00 BIO
and PHYTO BIO. Other functions currently implemented are computing the
product of two columns and a linear scaling of the data in one column. The
latter can also be used to construct a comstant column —- simply use a slope
of zero and an intercept of the desired value (e.g. Figure 3.3). This is one
area where additional capabilities could be important; for example (r,0)

calculations and hydrographic calculations could be added easily.
E) Chaining files head-to-tail

The final type of operation is simply adding one or more sources onto the
end of the first source. This allows constructing pseudofiles which represent
a whole set of stations; for example one could comstruct a TS relationship for

one of the radial sections. Figure 2.1! shows an example of this operatiom.

EVNO

W BN

EVNO

W oW N NN

usk:h'g

LAT

38.

38

37.

42

25

DEPTH

e o = O W= O

LAT

38.
38.
38.

38
38
38

37.
37.
37.

42
42
42

25
25
25

LONG
-69,
~-68,
-70.

e
oo h-h-m>h'h'8
NN aaw o

LONG
-89,
-69.
-63,
-68,
-68.
-68.
-70.
-70.
=70.

73
35
11

73
73
73
35
35
35
11
11
11

DEPTH

[
o

s ol O W

SOURCE |

SOV RLE 2

=
N"—"""N""'!—'NH'—'S

ok W N

U1~

Fiauee 2.9

REsuLT

Fler Josp

VMDD TEvse

MCCH#
110
110
110
110
110

MOC#
110
1i0
110
110
110

PRESS

D NG R

PRESS

(a2 B S) B LR N]

PRESS

SRS S R PURE LA YR S IS A
et

-
E

=
+

TEMP

20,
20.
19.

19.

18.
18.

7
335
82
12
58
1

TEMP

21.
21.
20
20.
20.
20.

6
23
89

62

51
48

TEMP

20.
20.
is.
19.
i8
18.
2.
2L.
20.
20.

“3
'S

20.

33
B2
12

.58

I
EaAp1

89
62

&1

P S

48

200 BIOM

12.
i1
6.5
3.1
.52

200 BIOM

3
3

12,5

1.
6.5
3.1
.52

SAL
33.
33.
33.

oy

S3

33.
33.

SAL
33.
33
33.
33,
33.
33.

a3,
33.
33,
33.
33.
33.

3

.33
.33
.38
.43
.46

53
54
57

62
63

.33

33
38
43
46
53
54

57

62
65

b

PHYTO BIOM VAL Z0
105.2
103.1 - -
T 1211 DU RLE
69.2
2.2
FHYTO BIOM BIOMASS
105.2 117.7 _
103.1 114.4 ResvrT
121.1 127.6 5
69.2 . 72.3 BloMAss =
2.2 2.72 .
Tou - PUMTY
FIG. 2.1
SouReg |
LES0LT
Crtpay L TO 2

3) Use of the menu~driven routines for eXamining files and pseudofiles and

constructing pseudofiles.

While one can conmstruct pseudofiles with regular text editors, it is not
easy and we have written a menu-driven package to help in this process. While
this is the simplest way to learn the system, it is pot necessarily the most
efficient; perhaps a command~driven package will be added later, which still
interfaces to the same database subroutines. Refer again to figure 1.3 where
the PBMENU package occupies the position shown, allowing the user to display,
print, or write to disk the contents of files or pseu_dofiles as well as
permitting the construction of pseudofiles. Since this will be the primary
interface to the database, at least for now, we shall make some comments upon

its use (the menus are hopefully fairly easy to understand),

The program is loaded with the usual system procedure. For the VAX, this
simply requires typing DBM in response to the $ prompt. This translates to RUN
<WCRDB.PGM>DBMENU according to the definition in your LOGIN.COM file. The
Microsoft basic version should be invoked with the /F:12 (on the NEC at least)

to give maXimum file space.

We have illustrated the menus which appear in figure 3.1, which is a

record of the process used to comstruct the pseudofile shown in figure 2.1,

A) Main menu.

OK

RUN “DBMENU"

4] RESTART

i CONSTRUCT PSEUDOFILE

2 TYPE FROM FILE OR PSEUDOFILE

3 PRINT

4 COPY TQO DISK

5 SAVE PSEUDOFILE DESCRIPTION
ENTER CHOICE ¢ 0 - 5 17 1
STEP 1

Q FINISH CONSTRUCTING PSEUDCFILE

1 SELECT ROWS

2 INTERP ROWS (ASCEND)

3 INTERF ROWS (DESCEND)

4 SELECT COLUMNS

5 JOIN TWO FILES (ASCEND)

6 JOIN TWO FILES (DESCEND)

7 INTERP FILES (ASCEND)

8 INTERF FILES (DESCEND)

9 FILL OUT JOIN (ASCEND)

10 FILL QUT JOIN (DESCEND)

11 ARITHMETIC CONVERSIONS

12 CHAIN FILES
ENTER CHOICE (0 - 12 17? 1
SELECT SQURCE FILE

Q. ANOTHER FILE FROM DISK
ENTER CHOICE (0 - 0 17 0
FILENAME? TS
VARIABLE FOR SELECTION

1 EVNO

2 DEPTH

3 TEMP

4 SAL
ENTER CHOICE (1 - 4)7 2
COMFARISON OPERATOR

1 =

2 >

3 <

4 o=

5 <=

6 <>
ENTER CHOICE (1 - 6)7 2
COMPARISON VALUE? 3.0
ADD MCRE CONDITIONS

0 END OF TESTS

1 AND

2 OR
ENTER CHOICE (0 - 2.}7 1
VARIABLE FOR SELECTION

1 EVNO

2 DEPTH

3 TEMP

4 SAL

ENTER CHOICE (1 - 4 17 2

Fe, 31
(&)

MAIN MEMD

A

PsevvoriLe
ComsSTRLCTION

MeNU

3

SELEY RowS

Slom
JI-T-() (9%

PDEPTH

DEPTH

it

COMPARISON OPERATOR

OV 1 o) B
ANAV AV

v on oH

ENTER CHOICE (1 ~ 6 17
COMPARISON VALUE?
ADD- MORE CONDITIONS

0 END OF TESTS

i AND

2 OR
ENTER CHOICE (@ - 2)7
STEP 3

0 FINISH CONSTRUCTING PSEUDCOFILE
1 SELECT RCWS

2 INTERP ROWS (ASCEND)

3 INTERP ROWS (DESCEND)

4 SELECT COLUMNS

5 JOIN THO FILES (ASCEND)
6 JOIN TWO FILES (DESCEND)
7 INTERP FILES (ASCEND)

8 INTERP FILES (DESCEND)

9 FILL QUT JOIN (ASCEND)
10 FILL OUT JOIN (DESCEND!}
11 ARITHMETIC CONVERSTIONS
12 CHAIN FILES

ENTER CHOICE (0 - 12)7

0 RESTART
1 CONSTRUCT PSEUDOFILE
2 TYPE FROM FILE OR PSEUDOFILE
3 PRINT
4 COPY TO DISK
5 SAVE PSEUDOFILE DESCRIPTION
ENTER CHOICE (0 - 5 17
EVNO DEPTH TEMP SAL
1 5 19.8 33.34
3 4 27.6 33.44
0 RESTART
1 CONSTRUCT PSEUDOFTILE
2 TYPE FROM FILE OR PSEUDOFILE
3 PRINT
4 COPY TO DISK
5 SAVE PSEUDOFILE DESCRIPTION

ENTER CHOICE (0 - 5)7

OK

7.0

EroD or

(OMSTRIC DO

G4 0w
ResuiTs

The options here (3.1A) are fairly straightforward. Option 1 (CONSTRUCT
PSEUDOFILE) leads into a set of menus for pseudofile construction; upon
completion of these procedures, the constructed pseudofile becomes the
“eurrent” file which can then be typed, printed or copied. The sub-menus for

pseudofiles will be discussed below.

Options 2 (TYPE FROM FILE OR PSEUDOFILE), 3 (PRINT), and 4 (COPY TO
DISK) provide a listing of the data in a file or pseudofile. The listing may
be directed in tabular form to either your terminal or the prin;er, or may
be written in "real file format" (Appendix 1) to disk. There are several
reasons for doing this: constructing a pseudofile can be time-éonsuming; if
one plans to use it frequently, it may be more efficient to write it to disk
and use these records as the source for further operations. One is, of
course, trading space for time. Secondly, the write to disk option provides
a complete real file which can then be transferred to another machine,
(While pseudofiles can be copied directly also, they are not useful unless

all the required source files are present on the second machine too.)

Each invocation of the option 2-4 will output the contents of the
"eurrent” file or pseudofile. If no file is current—— at the first pass
through the program or after the RESTART option (choice 0)--, the name of

the file to be used will be requested.

Option 5 is used after the construction of a pseudofile to save it for

future use. In principle, this can be done after comstruction, after typing,

printing or copying or even after bringing one in from disk. There are
several reasons for saving a pseudofile. First, one may wish to use the file
a few times but not take the storage space required if one converts it to a
real file. Secondly, one may wish to break a complicated series of
operations into a simpler set of steps and test the intermediate stages by
typing them out. For example, the desired final result might be as sketched
in figure 3.2, the sum of columns from a pseudofile which is two other
pseudofiles joined together. These two sources are in turn comstructed from
others. To minimize the chance of error, one could construct the description
of pseudofile A, save it to disk and check it by typing. Then one would
construcﬁ the description of pseudofile B, save and test it. Finally, one
would set up the step of merging these two files , doing the sums and
gelecting the desired columns. The source files for this last stage would be
the pseudofiles produced in the earlier steps (see figure 3.2 again).
Finally, because of their brevity, pseudofiles may prove an efficient method
for exchanging ideas of important relationships among users of the common

database,

B) The ways in which the results are constructed from the sources for the
various options in the second menu (figure 3.1B)-- the one for comstructing
pseudofiles—— have been described. One should note that the list is preceded
by a line giving the identification number for this step of the process.
This is an important number since the results of this step may be used as
the source for some future step; in a listing of possible source files, the

identification number is used to distinguish these intermediate results.

T\ &.

3. %

After selecting the operationm, one then is prompted for the source
file(s) required. In the first example (3.1), there is only one possible
choice, 0, which selects a file from disk. The file may name either a
pseudofile or a real file; the menu program does not care. Recall that data

from the archive are accessed by prefixing a * to the name.

The menus that follow are pretty self-explanatory, requesting the
information required to specify the procedure completely. When a comparisom
value is needed, any floating point number may be entered. For other options

at the second menu level, a few comments may prove helpful:

1) Menus offering choice of VARIABLE(S) TO KEEP will allow multiple
choices without repeating the list; the order of choices reflects the
ordering of columns in the result table. The list of selections is

terminated by using the 0 option.

2} 1In the interpolating, filling join, and chaining procedures, the order
of specification of source files is important. In the interpolating join
case, the second source is interpolated to the values of the first source.

In the filled join, the first source is "filled out" to match the second.

3) For the arithmetical operations, the user is first prompted for the
column which will receive the result (which may be either a column in the

source to be altered or a new column to be created), them for the operation

to be done, and finally for the operands.

As a second exXxample, consider the procedure in figure 3.3 which shows
appending of station numbers to two files and then chaining them together (a
miniature ﬁersion of the procedure for creating the .ALL files). The
modifications which add the station numbers (sections A and B in figure 3.3)
must be done before chaining the two files=— the processes proceeds from
"bottom up." After appending the station number to the first file C (the set
of steps marked A on the figure), the same operation is done for the second
file D {set of steps marked B) with the source being again “another file
from disk."” Finally these two results are chained together; for this
operation, the sources are the results from step 1 and from step 3.

It is possible to construct a pseudofile which canrbe used to perform an
identical series of operations on many different source files. This is domne
by responding with a ? to the name of the source file from disk at the time
of construction of the pseudofile. The computer will then request the number
‘of columns in the files to be used later and their names (figure 3.4). The
pseudofile should be saved before it is used; otherwise the ? wildecard will be
replaced by something else in the saved version (probably). Upon use of this
pseudofile, the computer will prompt at execution time for the filename to

substitute for the ? wildcard.

Finally, we show some complicated eXxamples (did you know that the
previous ones were simple?): given a list of event numbers (EVENT.DAT) as in

figure 3.5A, construct a table of NO3 and 02 at 75m depth (3.5B). This

OK
RUN “DBMENU"

0 RESTART

1 CONSTRUCT PSEUDOFILE.

2 TYPE FROM FILE OR PSEUDOFILE
3 PRINT

COPY TO DISK

4
5 SAVE PSEUDOFILE DESCRIPTION
ENTER CHOICE (¢ - 5)7

STEP 1

0 FINISH CONSTRUCTING PSEUDOFILE
1 SELECT RCHS3

2 INTERP ROWS (ASCEND)

3 INTERP ROWS (DESCEND!}

4 SELECT COLUMNS

5 JOIN TWO FILES (ASCEND)
6 JOIN TWO FILES (DESCEND)
7 INTERP FILES- (ASCEND!

8 INTERP FILES (DESCEND)

9 FILL OUT JOIN (ASCEMND!
10 FILL QUT JOIN {DESCEND)
i1l ARITHMETIC CONVERSIONS
12 CHAIN FILES

ENTER CHOICE (¢ - 1217
SELECT SOURCE FILE

g ANCTHER FILE FROM DISK
ENTER CHOICE (0 - 0)7
FILENAME?

0 END OF CONVERSIONS

1 CREATE NEW COLUMN

2 CHANGE OLD COLUMN

ENTER CHOICE ¢ 0 - 2 17
NEW VARIABLE NAME?
FUNCTION TO APPLY

1 SUM OF TWO COLUMNS
2 PROD OF TWO COLUMNS
3 LINEAR TRANSFORMATION TC ONE COLUMN
ENTER CHOICE (1 - 3)7
SLOPE?
ARGUMENT
i PRES
2 TEMP
3 SAL
4 STNO
ENTER CHOICE (1 -~ 4 }7?
INTERCEPT?
0 END OF CONVERSIONS
-1 CREATE NEW COLUMN
2 CHANGE OLD COLUMN

ENTER CHOICE (¢ - 27

11

e

Fic .(%3)00

CTD DA i
1%:

W,

STvO=)

(33}

o)
(53]

STE
0 FINISH CONSTRUCTING PSEUDOFILE 7
1 SELECT ROWS ‘
2 INTERP ROWS (ASCEND)
3 INTERP ROWS (DESCEND)
4 SELECT COLUMNS
5 JOIN TWO FILES (ASCEND)
6 JOIN THO FILES (DESCEND)
7 INTERP FILES (ASCEND)
8 INTERP FILES (DESCEND)
9 FILL OUT JOIN (ASCEND)
10 FILL OUT JOIN (DESCEND)
11 ARITHMETIC CONVERSIONS >
12 CHAIN FILES
ENTER CHOICE (0 - 12 17 11 APPEPD
SELECT SOURCE FILE
0 ANOTHER FILE FROM DISK ST To
1 (RESULTS FROM STEP LISTED)
ENTER CHOICE (O - 2)? 0 av YD?YEA
PILENAME? D i D
0 END OF CONVERSIONS
1 CREATE NEW COLUMN
2 CHANGE OLD COLUMN
ENTER CHOICE (0 ~ 217 1
NEW VARIABLE NAME? STNO
FUNCTION TO APPLY
T SUM OF TWO COLUMNS
2 PROD OF TWO COLUMNS
3 LINEAR TRANSFORMATION TO ONE COLUMN
ENTER CHOICE (1 - 3)7 3
SLOPE? 0
ARGUMENT
1 PRESS
2 TEMP
3 SAL
4 STNO L
ENTER CHOICE (1 - 4)7 1
INTERCEPT? 2 SO0 = 2
0 END OF CONVERSIONS
1 CREATE NEW COLUMN
2 © CHANGE OLD COLUMN
ENTER CHOICE (0 - 2)7 0
STEP 5
0 FINISH CONSTRUCTING PSEUDOFILE ,
1 SELECT ROWS | !
2 INTERP ROWS (ASCEND)
3 INTERE ROWS (DESCEND)
4 SELECT COLUMNS
5 JOIN THO FILES (ASCEND)
6 JOIN TWO FILES (DESCEND'
7 INTERP FILES (ASCEND)
8 INTERP FILES (DESCEND)
9 FILL QUT JOIN {(ASCEND)
10 FILL OUT JOIN (DESCEND)
11 ARITHMETIC CONVERSIONS

12

CHAIN FILES

ENTER CHOICE (¢ - 12)7
SELECT SOURCE FILE

0
1.
3

ANOTHER FILE FROM DISK
(RESULTS FROM STEP LISTED)
{RESULTS FROM STEP LISTED)

ENTER CHOICE (O - 4)7

"CHAIN TO

SELECT SOURCE FILE

0
3

ANOTHER FILE FROM DISK
(RESULTS FROM STEP LISTED)

ENTER CHOICE (¢ ~ 4)7

0
1

END OF CHAIN
CHAIN FURTHER

ENTER CHOICE (0 -1 7

STEP 6

WO RO WO

FINISH CONSTRUCTING PSEUDOFILE

SELECT ROWS

INTERP RORS (ASCEND)

INTERP ROWS (DESCEND})

SELECT COLUMNS

JOIN TWO FILES (ASCEND)
JOIN TWO FILES (DESCEND)
INTERP FILES (ASCEND!
INTERP FILES (DESCEND)
FILL OUT JOIN (ASCEND)
FILL QUT JOIN (DESCEND)
ARITHMETIC CONVERSIONS

CHAIN FILES

ENTER CHOICE ¢ 0 - 12)7

S N O

RESTART

CONSTRUCT PSEUDOFILE

TYPE FROM FILE OR PSEUDOFILE

PRINT
CoPY TC DISK

SAVE PSEUDOFILE DESCRIPTION

ENTER CHOICE (0. - 5 1?7

PRES

O N W R 0N O W

—

LTV S I i

TEMP SAL
20.7 33.
20.35% 33.
19.82 33.
19,12 33,
18.58 33.
18.1 33.
21.6 33.
21.23 33.
20.89 33.
20.62 33.
20.51 33.
20.48 33.

RESTART

33
33
38
43
46
53
54
57

62
65

CONSTRUCT PSEUDOFILE

TYPE FROM FILE OR PSEUDOFILE

PRINT
COFPY TO DISK

SN ST S S i et ol el 2

O

33)

(¢)

1

Crtngn

LAGT
Two
RESULTS
1o &<Exer

PRt
OovT

'R TSuLTS

Fle. 3.4

(A)

OK

RUN “DBMENU"

0 RESTART

1 CONSTRUCT PSEUDOFILE

2 TYPE FROM FILE OR PSEUDOFILE

3 PRINT

4 COPY TO DISK

5 SAVE PSEUDOFILE DESCRIPTION

ENTER CHOICE (0 - 5)7 1

STEP 1 A

0 : FINISH CONSTRUCTING PSEUDOFILE |

1 SELECT ROWS -

2 INTERP ROWS (ASCEND) .

3 INTERP ROWS (DESCEND! \

4 SELECT COLUMNS

5 JOIN TWO FILES (ASCEND) Comgreuct

6 JOIN TWO FILES (DESCEND)

7 INTERP FILES (ASCEND) PoVEDOE(LE

g INTERP FILES (DESCEND)

9 FILL OUT JOIN (ASCEND)

10 FILL OUT JOIN (DESCEND) \

11 ARITHMETIC CONVERSIONS

12 CHAIN FILES
ENTER CHOICE (0 - 12 12 11 Consutgrt
SELECT SOURCE FILE P RESS.

0 ANOTHER FILE FROM DISK
ENTER CHOICE (0 - 0 17 0 "
FILENAME? 7 & WIHCARD
NUMBER OF COLUMNS? 3 S B oM
NAME OF COLUMN L 7 PRESS-
NAME OF COLUMN 2 ? : TEMP " HEADERS
NAME OF COLUMN 3 ? SAL

0 END OF CONVERSIONS

i CREATE NEW COLUMN i

2 CHANGE OLD COLUMN t
ENTER CHOICE (O - 2)7 2

1 PRESS -

2 TEMP

3 SAL
ENTER CHOICE (1 -~ 3)7 1 [
FUNCTION TO APPLY x

1 SUM OF TWO COLUMNS g,

2 PROD OF TWO COLUMNS

3 LINEAR TRANSFORMATION TO ONE COLUMN _
ENTER CHOICE (1 - 3)7 3 pressx 102
SLOPE? 1.02
ARGUMENT

1 PRESS

2 TEMP

3 SAL
ENTER CHOICE (I - 3)7 1 >/

INTERCEPT? 0O

0 END OF CONVERSIONS

1 CREATE NEW COLUMN

2 CHANGE OLD COLUMN
ENTER CHOICE (0 - 2 17
STEP 3

0 FINISH CONSTRUCTING PSEUDOFILE
1 SELECT ROWS

2 INTERP ROWS (ASCEND)

3 INTERP ROWS (DESCEND)

4 SELECT COLUMNS

5 JOIN TWO FILES (ASCEND)
6 'JOIN TWO FILES (DESCEND)
7 INTERP FILES (ASCEND)

8 INTERP FILES (DESCEND)

9 FILL OQUT JOIN (ASCEND}
10 FILL COUT JOIN (DESCEND)
11 ARITHMETIC CONVERSIONS
12 CHAIN FILES

ENTER CHOICE (0 - 12 1?
SELECT SOURCE FILE

0 ANOTHER FILE FROM DISK

1 (RESULTS FROM STEP LISTED)
ENTER CHOICE (0 - 2 12
VARIABLE FOR SELECTION

1 PRESS
2 TEMP
3 SAL

ENTER CHOICE (1 - 317
COMPARISON OFPERATOR

1 =
2 >
3 <
4 o=
5. <=
6 <&

ENTER CHOICE (1 - 6 17
COMPARISON VALUE?
ADD MORE CONDITIONS

0 END OF TESTS

1 AND

2 OR
ENTER CHCICE (0 - 2 17
STEP 4

0 FINISH CONSTRUCTING PSEUDOFILE
1 SELECT ROWS

2 INTERP ROWS (ASCEND)

3 INTERF ROWS (DESCEND)

4 SELECT COLUMNS

5 JOIN TWO FILES (ASCEND)
6 JOIN TWO FILES {(DESCEND)
7 INTERP FILES (ASCEND!

8 INTERP FILES (DESCEND)

8 FILL OUT JOIN (ASCEND)
10 FILL OUT JOIN (DESCEND)
11 ARITHMETIC CONVERSIONS

34
(®

SLger
PResS

G.O dbov

12 CHAIN FILES
ENTER CHOICE (0 - 12 17 0
0 RESTART
1 CONSTRUCT PSEUDOFILE
2 TYPE FROM FILE OR PSEUDOFILE
3 PRINT
4 COPY TO DISK
5 SAVE PSEUDOFILE DESCRIPTION
ENTER CHOICE (¢ - 5 172 5
FILENAME? B
0 RESTART
i CONSTRUCT PSEUDOFILE
2 TYPE FROM FILE OR PSEUDOFILE
3 PRINT
4 COPY TO DISK
5 SAVE PSEUDOFILE DESCRIPTION
ENTER CHCICE (0 - 5 37 3
PRESS TEMP SAL
FILENAME FOR STEP 3 7 ' C
7.14 19.12 33.38
9.18 18.58 33.43
11.22 18.1 33.45
0 RESTART
1 CONSTRUCT PSEUDOFILE
2 TYPE FROM FILE OR PSEUDOFILE
3 PRINT
4 COPY TO DISK
5 SAVE PSEUDOCFILE DESCRIPTION
ENTER CHOICE (¢ O - 572 0
0 RESTART
1 CONSTRUCT PSEUDOFILE
2 TYPE FROM FILE OR PSEUDCFILE
3 PRINT
4 COPY TC DISK
5 SAVE PSEUDOFILE .DESCRIPTION
ENTER CHOICE (O - 5 17 3
FILENAME? B
PRESS TEMP SAL
FILENAME FOR STEP 3 7 b
7.14 20.62 33.6
9.18 20.51 33.62
11.22 20.48 33.865
0 RESTART
1 CONSTRUCT PSEUDOFILE
2 TYPE FROM FILE CR PSEUDOFILE
3 PRINT
4 COPY TO DISK

5 SAVE PSEUDOFILE DESCRIPTICN
ENTER CHOICE (0 - 5)7

OK

CILERAME TO
SURST. TPOR
7

i

2

SetomD
RuM

é"“_‘ g\)ﬁ)‘)T?TUTE
o ¢

4

involves data from several sources, since the 02 data is with the CTD stuff
.while the NO3 data is in the VNUT area. There are many ways to accomplish
this task, as sketched in figure 3.6; since we presume that it is more
efficient to select stations first and then interpolate, we follow the
second procedure. (See note below.) Figure 3.7 gives listings of the process

for this project.

First, we use the event log and EVENT.DAT to construct a file of event
numbers and corresponding CID numbers, saved as TEMP. Note that some events,
such as 420,14, are listed in the log as baving two CID numbers—- 5.6--
(maybe one shallow and one deep?). If this appeared in the TEMP table, we
would lose the data from this station, since 5.6 does not appear in the CTD
listings. Therefore, we would need to edit TEMPl to choose 5 or 6, whichever

were desired.

Secondly, we shall fill-join EVENT.DAT against the collected nutrients
file NUTKN093.ALL and interpolate the result to 75m. This will be saved as
TEMPl, A similar procedure is carried out on TEMP versus CTDKN093.ALL to

produce TEMP2,
The last step is to join TEMPl and TEMPZ to produce the table shown in
3.5B., This table can be printed or copied for downloading; the temporary files

can be deleted.

If the problem were to be altered to creating a table with all NO3 versus

FILENAME
EVENT.DAT
EVENT#

420.0200
420.1000
421.0200

EVENT# DEPTH
420.1000 75.0000
421.0200 75.0000

420,02 —

NO3
8.9193
10.8532

no

02
5.4333
5.2727

OV DI

Cursa il o Lle

d ato
at 7 Twm

0,

EVeMT-DAT

\ EVEwWT ¥)

% EVN Kwo93
cTDND

gV o

(M} -+

% NUT K093, AL
pPe e

R
SIG™

Flavee 3.6

EvENT3 | CTDVO

MNO3

EVENT 8 | (om0

EVENT B

EVENT \DAT

% E\IN KN093

¢Tdrvo | EYNO

[—
ITHHE\ .-

S S N

(TEH?)

-SOJDJI_

gvenT &
= Evwo

RUN DBMENU

O RESTART

1 CONSTRUCT PSEUDOFILE

2 TYPE FROM FILE OR PSEUDOFILE
3 PRINT

4 COPY TO DISK

5 SAVE PSEUDOFILE DESCRIPTION
ENTER CHOICE (©- 5)

FILENAME

EVENT#
420.0200
420.1000
421.0200

¢ RESTART
1 CONSTRUCT PSEUDOFILE

- 2 TYPE FROM FILE OR FSEUDCFILE

3 PRINT

4 COPY TO DISK

5 SAVE PSEUDOFILE DESCRIPTION
ENTER CHOICE (0- 5]

STEP 1

SELECT RCOWS

INTERP ROWS (ASCEND)
INTERP ROWS (DESCEND)
SELECT COLUMNS

JOIN TWO FILES (ASCEND)
JOIN TWO FILES (DESCEND)
INTERP FILES (ASCEND!
INTERP FILES (DESCEND)
FILL OUT JOIN (ASCEND)
10 FILL OUT JOIN (DESCEND)
11 ARITHMETIC CONVERSIONS
i2 CHAIN FILES

W Wb W O

ENTER CHOICE (O- 12}

SELECT SOURCE FILE
O ANOTHER FILE FROM DISK
ENTER CHOICE (0O- O

FILENAME

MERGE WITH

SELECT SOURCE FILE

O ANOTHER FILE FROM DISK
ENTER CHOICE (O- 0)

FILENAME

FINISH CONSTRUCTING PSEUDOFILE

F’-l&uﬂ»é 3'-'?' (v

TYPE o0T

EVEST. DAT

2

EVENT.DAT

M ERe<E

EVENT . DAT
b

EVEMNT (0=

T
1D

Evenrg —
CTDND

(o RRESPOMDEMCET

0

EVENT. DAT

0

*EVNKNOS3

VARIABLE FOR KEY
1 EVENT#
ENTER CHOICE (1- 1)

COMPARISON OPERATCR

1 =

2 =+-5%

ENTER CHOICE (1- 21

VARIABLE TO COMPARE
TIME

DAY

LAT

LATMIN

LONG

LONGMIN

TYPE

CTDNO

EVNO
ENTER CHOICE (1l- 9)

O DN W

ADD MORE CONDITIONS

0 END OF CONDITIONS

1 AND

ENTER CHOICE ¢ ¢- 1)

VARIABLE{(S) TO KEEP

1 EVENT#

-1 TIME

-2 DAY

-3 LAT
-4 LATMIN

-5 LONG

-6 LONGMIN

-7 TYPE
-8 CTDNO

-§ EVNO

O END OF KEEP CONDITIONS
ENTER CHOICE (-9- 1)

ENTER CHOICE (-9~ 1)

ENTER CHOICE (-9- 1}

STeP 4

FINISH CONSTRUCTING PSEUDOFILE
SELECT ROWS

INTERP ROWS (ASCEND!)

INTERP ROWS (DESCEND)

SELECT COLUMNS

JOIN TWO FILES (ASCEND)

JOIN TWC FILES (DESCEND)
INTERP FILES (ASCEND!

INTERP FILES (DESCEND!

W~ DD w0

<O

XEE ¢
O rLy

EVENT #

L CTowNo

3%

(2)

9 FILL OUT JOIN (ASCEND)

10 FILL QUT JOIN (DESCEND)
11 ARITHMETIC CONVERSIONS

12 CHAIN FILES

ENTER CHOICE (0= 12)

0 RESTART

1 CONSTRUCT PSEUDCFILE

2 TYPE FROM FILE OR PSEUDOFILE
3 PRINT

4 COPY TO DISK

% SAVE PSEUDOFILE DESCRIPTION
ENTER CHOICE (0O- 5}

EVENT# CTDNO
420.0200 2.0000
420.1000 4.0000
421.0200 7.0000

Q RESTART

1 CONSTRUCT PSEUDOFILE

2 TYPE FROM FILE OR PSEUDOFILE
3 PRINT

4 COPY TC DISK

9 SAVE PSEUDOFILE DESCRIPTION
ENTER CHOICE (0O- &)

OUTPUT FILENAME
FILENAME

O RESTART

1 CONSTRUCT PSEUDOFILE

2 TYPE FROL FILE OR PSEUDCFILE
3 PRINT

4 COPY TG DISK

5 SAVE PSEUDOFILE DESCRIPTION
ENTER CHOICE (0- 35}

STEP 1

SELECT ROWS

INTERP ROWS (ASCEND)
INTERP ROWS (DESCEND)
SELECT COLUMNS

JOIN TWO FILES (ASCEND)
JOIN TWO FILES (DESCEMD)
INTERP FILES (ASCEND)
-INTERP FILES (DESCEND)
FILL OUT JOIN (ASCERD)
10 FILL OUT JOIN (DESCEND)
11 ARITHMETIC CONVERSICNS
12 CHAIN FILES

VOB wh~O

FINISH CONSTRUCTING PSEUDOFILE

TEMP. DAT

‘%'}(3)

e e =

Tre oot
RECLLTY

l
1

SAVE 1N

TEMP DAY

MERE
EVEVUT.DAT
wiTH

NoITHERT
D fri

ENTER CHOICE (0- 12)

SELECT SOURCE FILE
0 ANOTHER FILE FROM DISK
ENTER CHOICE (0O- 0}

FILENAME

MERGE WITH

SELECT SOQURCE FILE

0 ANOTHER FILE FROM DISK
ENTER CHOICE (0~ 0)

FILENAME

VARIABLE FOR KEY
1 EVENT#
ENTER CHOICE (1- 1}

COMPARTSON OPERATOR

1 =

2 =+-5%

ENTER CHOICE (1- 2}

VARIABLE TC COMPARE
DEPTH

TEMP

SAL

NO3

NO4

5L

THETA

SIG-TH

‘EVNO

ENTER CHOICE (1- 9

WO 0D O AR L o

ADD MORE CON"ITIONS

Q END OF CONDITIONS

1 AND

ENTER CHOICE (0O- 1)

VARIABLE(S! TO KEEP

1 EVENT#

-1 DEPTH

-2 TEMP

-3 SAL

~4 NO3

-5 NO4
-6 81

~7 THETA

-8B SIG-TH

-9 EVNO

0 END OF KEEP CONDITIONS

0

EVENT.DAT

*NUTKNO93. ALL

BALED ON

(oMMDP

EVENT & &

it e e e e
e o s ot i —

lKeer

EvewT H
PeP™
ND3

3.3,

()

ENTER CHOICE (-9- 1}
ENTER CHOICE (-9~ 1}
ENTER CHOICE (-%- 1}

ENTER CHOICE (-9- 1}

STEP 4

FINISH CONSTRUCTING PSEUDOFILE
SELECT ROHWS

INTERP ROWS (ASCEND)
INTERF ROWS (DESCEND)
SELECT COLUMNS

JOIN TWC FILES (ASCEND)
JOIN TWO FILES (DESCEND)
INTERP FILES (ASCEND)
INTERP FILES (DESCEND)
FILL OUT JOIN (ASCEND)
10 FILL OUT JOIN (DESCEND)
11 ARITHMETIC CONVERSIONS
12 CHAIN FILES

ORI WO

ENTER CHOICE (Q- 12}

SELECT SOURCE FILE
(O ANOTHER FILE FROM DISK
1 results from step
ENTER CHOICE (O~ 3}

VARIABLE FOR SELECTION
1 EVENT#
2 DEPTH
3 NO3
ENTER CHOICE (1- 3}

COMPARISON VALUE

STEP 5

FINISH CONSTRUCTING PSEUDOFILE
SELECT ROWS

INTERP ROWS (ASCEND)
INTERP ROWS (DESCEND
SELECT COLUMNS

JOIN TWO FILES (ASCEND)
JOIN TWO FILES (DESCEND)
INTERP FILES (ASCEND!
INTERP FILES (DESCEND)
FILL OUT JOIN (ASCEND)
10 FILL OUT JOIN (DESCEND)
11 ARITHMETIC CONVERSIONS
12 CHAIN FILES

O A N O

75.

Now

| OTEAPOLATE
REsuLz oF
LAST STE®

To S

DEPTH

3.'-{-(5_)

ENTER CHOICE (0~ 12)

0 RESTART

1 CONSTRUCT PSEUDCFILE

2 TYPE FROM FILE OR PSEUROFILE
3 PRINT

4 COPY TO DISK

5 SAVE PSEUDOFILE DESCRIPTION
ENTER CHOICE (0- 5)

EVENT# DEPTH NO3
420.1000 75.0000 8.9193
421.0200 75.0000 10.8532

0 RESTART

1 CONSTRUCT PSEUDOFILE.

2 TYPE FROM FILE OR PSEUDOFILE
3 PRINT '

4 COPY TO DISK

5 SAVE PSEUDOFILE DESCRIPTION
ENTER CHOICE (0O~ 5!

QUTPUT FILENAME
FILENAME

0 RESTART

1 CONSTRUCT PSEUDOFILE

2 TYPE FROM FILE OR PSEUDCFILE
3 PRINT '

4 COPY TO DISK

5 SAVE PSEUDOFILE DESCRIPTION
ENTER GHOICE (O- 5)

0 RESTART

1 CONSTRUCT PSEUDOFILE

2 TYPE FROM FILE OR PSEUDOFILE
3 PRINT

4 COPY TO DISK

5 SAVE PSEUDOFILE DESCRIPTION
ENTER- CHOICE (0- 3)

STEP 1

SELECT ROWS

INTERP ROWS (ASCEND)
INTERP ROWS (DESCEND)
SELECT COLUMNS :
JOIN THO FILES (ASCEND!
JOIN TWO FILES (DESCEND)
INTERP FILES (ASCEND)

~) O o B e O

FINISH CONSTRUCTING PSEUDOFILE

3 '—'}(@

2 1
TMPE
RESULT]

4 SAVE
Comtdor 5 2 Ps

TEme, DAT
TEMPL.DAT

RESET

EveEAN THiP G

MERGE

TEMCO
wWITH

CTD DA

8 INTERP FILES (DESCEND!
9 FILL OUT JOIN (ASCEND)
10 FILL OUT JOIN (DESCEND!
11 ARITHMETIC CONVERSIONS
12 CHAIN FILES

ENTER CHOICE (O- 12)

SELECT SOQURCE FILE
O ANOTHER FILE FROM DISK
ENTER CHOICE (©O- 0}

FILENAME

MERGE WITH

SELECT SOURCE FILE
0O ANOTHER FILE FROM DISK
ENTER CHOICE (0- Q)

FILENAME

VARIABLE FOR KEY
1 EVENT#
2 CTDNO
ENTER CHOICE (1~ 2}

COMPARISON OPERATOR

1 =

2 =+-5%

ENTER CHOICE (1l- 2)

VARIABLE TO COMPARE
SIGTH

PRES

TEMP

SAL

02

DYNHGT

STNO
ENTER CHOICE (- 1- 7)

SO U s o o

ADD MORE CONDITIONS

0 END COF CONDITIONS

1 AND

ENTER CHOICE (©- 0!

VARIABLE(S) TO KEEP
1 EVENT#
2 CTDNO
-1 SIGTH
-2 PRES
-3 TEMP
-4 SAL
-5 02
-6 DYNHGT
-7 STNO
0 END OF KEEP CONDITIONS

TEMP.DAT

0

*CTDKNOS3. ALL

A

(BARED oP

(ommMo ™

CTONOo s

\CEEP

EVERTH § TRES; 02

ENTER CHOICE (-7- 2}
ENTER CHOICE (-7- 2)
ENTER CHOICE (-7- 2}
ENTER CHOICE (-7- 2}

ENTER CHOICE (-7- 2)

STEP 4

SELECT ROWS

INTERP ROWS (ASCEND)
INTERF ROWS {(DESCEND)
SELECT COLUMNS

INTERP FILES (ASCEND)
INTERP FILES (DESCEND)
FILL OUT JOIN (ASCEND)

MDD o O

10 FILL OUT JOIN (DESCEND)

11 ARITHMETIC CONVERSICONS
12 CHAIN FILES

ENTER CHOICE (0- 1l2)

SELECT SOURCE FILE
0 ANOTHER FILE FROM DISK
1 results from step
ENTER CHOICE (©0- 3)

VARIABLE FOR SELECTION
1 EVENT#
2 CTDNO
3 PRES
4 02
ENTER CHOICE (1- 4)

COMPARISON VALUE

STEP 5

SELECT ROWS

INTERP ROWS (ASCEND)
INTERP ROWS (DESCEND)
SELECT COLUMNS

INTERP FILES (ASCEND!}
INTERP FILES (DESCEND)
FILL OUT JOIN (ASCEND)

OO R w0

10 FILL OUT JOIN (DESCEND)

11 ARITHMETIC CONVERSIONS
12 CHAIN FILES

FINISH CONSTRUCTING PSEUDCFILE

JOIN TWO FILES (ASCEND)
JOIN TWO FILES (DESCEND)

FINISH CONSTRUCTING PSEUDOFILE

JOIN TWO FILES (ASCEND)
JOIN TWO FILES (DESCEND)

2
._2.
-5
0
\
[
i.
|
, TNTERPOLATE
LAY
REsLLT 1O
1
TS
3
76.0
N

34,

3"'}@)

ENTER CHOICE (0- 12}

O RESTART

1 CONSTRUCT PSEUDOFILE

2 TYPE FROM FILE OR PSEUDOFILE
3 PRINT

4 COPY TC DISK

5 SAVE PSEUDOFILE DESCRIPTION
ENTER !HOICE (O~ 5}

2 ™Pe
EVENT# CTDNO PRES 02 3
420.0200 2.0000 75.0000 5.5136 RESLTS
420.1000 4.0000 75.0000 5.4333
421.0200 7.0000 75.0000 5.2727 \

0 RESTART

1 CONSTRUCT PSEUDOFILE _
2 TYPE FROM FILE OR PSEUBOFILE , C)RUt
3 PRINT A
4 COPY TO DISK

5 SAVE PSEUDOFILE DESCRIPTION
ENTER CHOICE (©O- 5) TEMPZ.DAT

4
OUTPUT FILENAME Comtdlr §
FILENAME

TEMP2.DAT

0 RESTART |
1 CONSTRUCT PSEUDOFILE |
2 TYPE FROM FILE OR PSEUDCFILE \
3 PRINT

4 COPY TO DISK

5 SAVE PSEUDOFILE DESCRIPTION
ENTER CHOICE (©- 5)

STEP 1

FINISH CONSTRUCTING PSEUDOFILE

SELECT ROWS

INTERP ROWS (ASCEND!

INTERP- ROWS (DESCEND)

SELECT COLUMNS

JOIN TWO FILES (ASCEND)

JOIN TWO FILES (DESCEND) 5
INTERP FILES (ASCEND! MER&E
INTERP FILES (DESCEND) _

FILL OUT JOIN (ASCEND) TEMP) DAT
10 FILL OUT JOIN (DESCEND)

11 ARITHMETIC CONVERSIONS Wi TH

12 CHAIN FILES TEM?Z-DAT'

\

O DWW O

ENTER CHOICE (0~ 12}

SELECT SOURCE FILE
O ANOTHER FILE FROM DISK
ENTER CHOICE (6- O

FILENAME

MERGE WITH

SELECT SCURCE FILE

0 ANOTHER FILE FROM DISK
ENTER CHOICE ¢ 0- 0)

FILENAME

VARIABLE FOR KEY
1 EVENT#
2 DEPTH
3 NO3
ENTER CHCOICE (1- 3}

COMPARISON OPERATOR

l =

2 =+-5%

ENTER CHOICE (1- 2i

VARIABLE TO COMPARE
1 EVENT#
2 CTDNO
3 PRES
4 02
ENTER CHOICE (1- 4}

ADD MORE CONDITIONS

O END OF CONDITIONS

1 AND :
ENTER CHOICE (O~ 1)

VARIABLE(S) TO KEEP
1 EVENT#
2 DEPTH
3 NO3
-1 EVENT#
-2 CTDNO
-3 PRES
-4 02
0 END OF KEEP CONDITIONS
ENTER CHOICE (-4- 3)

ENTER CHOICE (-4- 3)
ENTER CHOICE (-4- 3!
ENTER CHOICE (-4~ 3!}

ENTER CHOICE (-4- 3)

0

TEMP1.DAT

0

TEMP2.DAT

3 'q‘(to)

?)/’{SED oM
(ommon

Evert

J

l

KiE P
CVESTE DEPM
N3 , 02

\

STEP 4

FINISH CONSTRUCTING PSEUDCFILE
SELECT ROWS

INTERP ROWS (ASCEND!}
INTERP ROWS (DESCEND)
SELECT COLUMNS

JOIN TWO FILES (ASCEND)
JOIN TWO FILES (DESCEND)
INTERP FILES (ASCEND)
INTERF FILES (DESCEND)
FILL OUT JOIN (ASCEND)
10 FILL QUT JOIN (DESCEND}
11 ARITHMETIC CONVERSIONS
12 CHAIN FILES

OO w0

ENTER CHOICE (0- 12)

0 RESTART

1 CONSTRUCT PSEUDOFILE

2 TYPE FROM FILE OR PSEUDCFILE
3 PRINT

4 COPY TO DISK

5 SAVE PSEUDOFILE DESCRIPTION
ENTER CHOICE (0~ §5)

EVENT# DEPTH NO3 02
420.1000 75.0000 8.9193 5.4333
421.0200 75,0000 10.8532 $.2727

0 RESTART

1 CONSTRUCT PSEUDOFILE

2 TYPE FROM FILE OR PSEUDOFILE
3 PRINT

4 COPY TO DISK

5 SAVE PSEUDOFILE DESCRIPTION
ENTER CHOICE (0- 5)

5% -~ S8TOP

>

o

~Z

T4Hee ouT
ik
RESLLT S

Soe

702 data for depths < 75m, some other problems can arise. Presumeably, omne
would like to use the interpolating join process, based on depth, to produce
N03 and 02 at common depths after selecting the stations, as sketched in 3.8.
As long as both input tables to the join step are pretty regulat,'having data
from all stations covering all depth ranges, this procedure will work.
Bowver the event numbers with nutrient data (420.10, 421,02) do not
correspond exactly to those with CTD data (420.02, 420.10, 421,02); thus we
would end up iﬁterpolating the wrong pair of station data. This will show up
if we keep the event numbers from both TEMP1 and TEMPZ number in the final
result (figure 3.9). We can cérrect this problem by editing out the
troublesome station (420,02) with either row selection or editing of the
original EVENT.DAT. Other difficulties arise because station.420.10 has its
last <75m value at 25.7m while station 421.02 begins at 58m. Based on a
single column of depth information, we cannot know that we switched
stations. We may need a join with both equality of certain columns and

interpolation te correct this problem.+

Note-—- for operations like this, if there are not too many stations, it
may be better to do the NO3-02 interpolation and depth selection stationm by

station and check them before chaining the results together (figure 3.10).

Flauere 3.8

EvenT,DAT

EvenrT R . (TEMP)

ey
Event # [cTDwo

R B
% EVN Kn093

_'hnz‘--— crom.IE
I |

\ e

EveE~STE | DE

| NTERP EVewTs | EVE~ TH [DEF

-._H____-__.__‘___...———w— -
Evewi 4 | (TOMe | PRES

Fiauee 3.9

EVENT# EVENT# DEPTH NO3 02

420.1000 420.0200 3.2000 2.4900 6.8170
420.1000 420.0200 3.6000 2.4600 6.8510
420.1000 420.0200 8.4000 2.6400 6.9190
420.1000 420.0200 11.3000 3.6900 6.9230
420.1000 420.0200 17.6000 5.1400 6.4060
420.1000 420.0200 25.7000 8.2600 6.1700
421.0200 420.0200 58.0000 8 5. 8080

.0800

¥ NVT KN 420.10 A File. 35.10

‘-_---—-—.- .
DeEpTd | -+ [MOB
_beeTr

DgPM =

*CTP KN 095.0‘1 oress

App EvenT# A
CHA W of

§
: ToEMER AND CHAN
S (cf. 3.3)

'A“'NUT e~ 421 I I

T:j?m

¥ cTd w0930

\/‘—\/\—/

Trig Covid BE

$PEC|FICATIOND

DEPTH 'NO3 02 EVENT#
8. 4000 2.6400 6,9230 420.1000
11.3000 3.6%00 7.0227 420.1000
17.6000 5.1400 6.8400 420.1000
25. 7000 8.2600 6.3685 . 420.1000
58.0000 8.0800 5.6100 421.0200

. %) Data access on VAX

In order to get data, ybu need to know its name. For convenience we
have organized the data into subdirectories of <WCRDB> and put the
translation into the data base routines. All names for data in the archive
will be of the form

*TTTSSNNN. NNN

where

TTT = type of data (CTD,NVT, EVN...)

$$ Ship (KN, EN, 0C, A2}

NNN.NN = jdentification number

The identification number depends upon the type of data; it may be the event
number or the number of the cruise and station number or cruise.,ALL for

collected sets. Event number — CID number correspondences are in the
*EVNsscce

files where cce is the cruise number.
These filenames are translated into

<WCRDB,TTT.SS>NNN.NN

Searching is therefore fairly straightforward using the GOTO and DIRE
commands from the $ prompt.

GOTO WCRDB provides a listing of types of data

GOTO ,CTD then lists all the ships having CTD data
GOTO .KN lists all the CTD data from the Knorr
DIRE 093,% lists all the KN093 CTD data etc.

Note that Y will terminate these listings.

We could find all the data labelled by event pumber 614.02 by doing

DIRE < WCRDB.¥*.* >614,02

(DIRE < WCRDB.*.KN > 614.02 would also work since only KN data would exist

for this particular event number.)

It is hoped that the adoption of this standard form for names will make

them easily remembered during the use of DBMENU.

Acknowledgements: This work was supported by an NSF grant to MIT. The Apple
version is being prepared by Tim Cowles. Thanks also to Peter Wiebe for
comments on earlier (and present) versions of the program and to Terry Joyce

and Jane Dunworth-Baker for helping structure the files on the VAX,

Appendix l. File format

The format used by the database routines is quite simple. Conceptually,

the data is organized into tabular form; e.g.

EVNO DEPTH -TEMP SAL

602,1 2 12,5 33.42
602.1 5 10.1 33.47
602.1 10 8.9 33,53
603.4 2 13.2 33.44

603.4 8 9.9 33,48

But as actually stored on disk, this file looks like

¥+ these things are comments— not in file! ¥

& e this is the number of columns~- number of
EVNO | rows {down the page) is not specified
DEPTH I

TEMP |--—-- these¢ are the names of the columns (8
SAL | character limit on VAX)

602,1 !

2 [e these are the data from the first row
12,5 i

33,42 |

602,1 I

5 Jorrrmeen data from second row

10,1 |

33,47 |

602,1 |

10 it third row
8.9 |

33.53 i

603.4 |

13,2 |
33.44 !

603.4

9.9
33.48

—- A separate line for each piece of data.

The numbers are all read with a free-format read, so that the number

of decimal places and leading or trailing blanks are all unimportant.

We strongly rcommend the use of a standard value -999 to indicate
missing data entries. The number of rows is determined by reaching end of

file.

Appendix 2. Pseudofile format

The distinguishing mark of a pseudofile on disk is that the number of

columns is the negative of the actual number. Thus the opening subroutine

can distinguish immediately which style it is dealing with.
- # of columns

name col. 1

name col. 2

pointer to first pseudoinstruction to eXecute
of instruction data items to follow

instruction
data

items

of subfiles

- 1 - -
filename \ &addr in instr array
]
columns or #columns

ALY

relocation pointer! relocation pointer

The format is:

The pseudoinstructions look like (stretched out horizontally rather than

source # of col]op’ comp and] [colf lop(}comp
file # condit valuej|jor b |jval
source col
file #

vertically):

select

= oEE

interp asc comp
desc val

'___-_-———"W

keep source # col \col L col
file # to keep
o
‘———-""'—"'_—-.-_.-‘

join asc [5 ! source source # of col op| | col

desc ‘6 | file # file # condit srcl src

| v e erittenrd g

col ‘op' col # col col col
srcl src2 |\ to keepill,2 1,2{(- for sre2)
5 L R
. .
interp jn asc source BOUrce col col # col col col
desc file # file # srcl src2| | to keepl| 1,2 1,2
! | St 10

' fill jmn asc ‘ 9] source ‘source | same as regular join
: desc ‘10‘ file # file ¥ t
—]

arithm ‘11 source # conv col # #arg functf}col # [/|col #
file # to do result arg 1 |flarg j

col #

result etc.

source
file #1

The pseudofile for figure 3.1 is shown in A2,l while that of 3.3 is in

chain ilZl

source 0

file #2{]ifile #j
L —— o

source

A2.2, Note that the instruction sections correspond fairly closely to the
responses to the menus.

Each instruction uses one or more source files. These are located
using the "subfile" information., They may be either another file from disk
(in which case the filename appears in the pseudofile) or a result from some
previous step (in which case the &xxxxxxx form is used with the Xxxxxxx
pointing to the address in the instruction section which should be called to
retrieve this source file). Addresses begin at 1 and increment by 1 for each
line.

The relocation pointers tell which line within the instruction
referenced this particular subfile. When this pseudofile is loaded in, the
instructions will not generally start at location ! within the IO or INSTR
array; nor will the subfiles be labelled by their original numbers. Thus
both the & pointers and the instyuctions which give subfile numbers must be
altered.

The information concerning subfiles (or for that matter primary files)
is contained in arrays L5, P5, N5,F0 (Basic) or IWK (1,,13) in Fortran.
These look like

L50), IWK(1,) P5(), IWK(2,) N5(), IWKR(3,) FOSQ), 1wr(4..13)

1) File which is not open

=0 - >0 not yet used name on disk
<0 finished and

closed

N5} = # columns

2) Open real file
>0 0 not yet read >0 # columns name on disk
>0 pointér to
region in D
array where

data will go

3) Pseudofile in memory

<0 0 not yet read >0 # columns
value is - >0 pointer to >0 # columns
addr. in I0 or region in D <0 finished and
INSTR array for where results closed

this pseudoinstr. will go..

Fie, A2.1
PSEVDOFILE For

ORI 3

-4

EVNO

LEPTH

TEMP

SAL

1 bic)in

10 B sty

% lsed

instr.

1 B Cly

TS

Fi. AZ.2

PoBuboliLE
e 3.3 /\J
~4 . / 12
PRESS / 1
TEMP | 3
SAL 0
STNO / 4
19 \%7-\- (&
22 #ast, 4
1 @ \ 20
2 c
1 / 3
4 A ‘ha 2
“‘\S{'f, &
|
3 4
0 21
; /)
1 3
11 @ 11
4 f
1
Sahn
4
Théby
3
3 (
!
0
1)
2

10

®

C]/lo;n P

b Blas
6\“9(\[‘1 'H"'

= ingte H)

Gubbly B2
--)"('_“ pw sl

Ll # 73

= teshs O

Sufg@'-l‘g_ 'H- L‘
-9 D [Tl C\"')'/-...

Agpsnd 3

SELECT ROW OPERATION ' SELECT COLUMN OPERATION
12000-12490 13000-12130
,//EirsE\\ s (//;;;sf\\ ,
\\\Row?‘f/-“ Reserve ; ~_Row? " Reserve
- : Result g '\\////' | Result
\\ Workspace | i | Workspace |
T ' L . -
; Point to ; . Point o .
i Sourcem”j © Source |
i —‘-;’r"_“'_,:::;';f‘_.._.;"_j.;..,, o . i
L Get i ¢ Get
;| Record ;/ Regord !
L TR . :
IC) s EOF? -
A >\ - X
' / Satisfy’ . " Move desired ;
S Lriterion? -~y i columns from i
SR § i Source w3 f
l Move ali ﬁA; {Re;ufﬁi)
| columns from | RERTIY
| Source ws to J
} Result ws
v
L Return;
ARITHMETIC CONVERSIONS CHAIN FILES
15000-15920 16000-16520
.'// ’ S s "’J) N
/. First . ; First ~
“_Read? e : Reserve N Read? - Reserve
~ . Result : S _ Result
| . Workspace | g Workspace
! i ' o = ~
Gat Source _ . File at | Move o
Record - . End? Next in Chain 7
\@.-7 " ger
e A . Record
? Mova Source | : .-
i To Result ! Not EOF? !Move columns
f Workspace | . T | | from Source
T \ Close { to Result !
, »- Do l..#ops Source ’
- Go to Function T'Move to :
} Next in Chain g
K
CLast one? - -1 Set EOF
2Sava Result) : Return '
KReturn_

e

-t
H

JOIN OR FILL JOIN
14000-14330

-\

First ,,,,,,,
ead Reserve |
\\\\\ Result i
| Workspace /
///_ !

\\\jn7 /’ iGet lst

!Source !
- e T
< EOF?,,,)----- ' .
i oGet 2nd
' Source .|

i T?wééé‘iéEji Compare Get“2nd

Source f, st to 2nd/ fSource

1<2 \l, 152 -]

i Move desired
+ columns from i
Source workspaces |
to Resuit ws ,
Lo
Return’

INTERPOLATE ROW
12500-12890

L
/ First & .
~_ Read? i Reserve
L i Double
j Norkspaoe{
! Move 1.B to
C1.A {
<I
Get 1.B .
Re?ord i

{EOF?
.

L
“1.A<= Valug~ g

\

Get lst ..
- Source i}

!

-
{

_;iGet 1.8

© Record

EOF?

1.8 e Inter oiatp o
A \\\ T " ’

Vaiues and [
1 Save in 1.A |
! F ,
b
(feturﬁ"i

INTERPOLATE FILES

14500-14800

e

P
7 Eir

e

<

e
j;Get lst‘g

Source
1 .

=3

Test

2.A <= 1
\<\3.83,f
i

st
A

\\\Eféiz/l

T ———
T; Get lst f

i

ompare

;- Source !f ™ Crossing
L ‘Direction.

1<2.A<2.87 "
2.B<2.A<1
1<2.8<2.A

H
|
1

et
EOF? Y,

iInterpo‘late :

l

L Reserve I} Get lst
workspace i Source
for Result |

! +record 2.4 |

) ‘“MOQe 2.B to {f
T 2.A Get 2.8 J

2.8<2.2<1 e
2.B<1<2.A L e
: \EGet lst

iy ' JESouroe

j -

rd

? Select
. Columns |

,Ref

urn

- EOF?
. iy
i Get 2.8
EOF?. ~)
} [=
' Move 2.8

to 2.4
_Get 2.B.

e !

<EOF? -

K Tast 2.A<E ——. 0%

1< 2'3,~’”

ot
~Compare N

L4 S X
i Crossing ,—

“Directio

1<2.4 ~———" 2.a¢1

-

CPEN SUBROUT INE

OPNSUB 10400-10910

P unit number
i . -

' Adjust filename

~for * or 7
i
" Open file
]
Read number

R Get é;éilabTé ;

i

i

of columns NC

1
!

y

~% < Do l..INCY

[| .
i Read name of

©eoTumn

H

- Top level - oo

T

emd
S NC <O T

—

S
i (Real file)

!

{ Flag as real
in Fileblock

- Flag Unit# in

Use

i

T Set INC! in
! Fileblock j

Save in

'
H
H

P
'

i i L

array |

NAME
S

T e e Y

(psuedofi]e)
Read pointer to
beginning and set ;
in Flleblock i
Flag as Psuedofile
, .
Read # of instructions
i
L..# instruct. ”
!

Read instruction into ;
1

INSTR area A
é;;;mi subfiles i
!fn{bo l..L subfiles -
Read f;]éname '
& POINTER .~ | Relocate
ey T & set as

Set name for
later open
A
Read #

lpsuedofiIe

: g
columns .

into fileblock

3

‘ Return

for subfile !
i
Read relocation
pointer
i
Relocats
Close file
Set unit# free

GET DATA
DBGET 10210-103%0

| Get Fileblock |
" Number from

Instruction =
i Arra .

. Yoo | | open it /
- Not yet Opened? =~ >~ -t

T ' Rt IR

<?hea] f11e?,“r~*’“ﬁ;7- CFhirst - .

R L " Read? %Reserve
(gg;g'éukrent { x\w”'g. . ! workspace ;

state on stack : :

R AR ! Read number

Point to lst | - of items

i Instruction for] "specified ;

i psuedofile 7 . by # code i

. R T ©in Fileblock {

i call instruction | | into workspace |
- 3 ’ | area specified in}

: . ! Fileblock

L 7EOF? \Set EOF flag ;
. Pop stack and ‘ i True i
- Return resu1t; Set EOF flag.
oo ~False {

Return result

CLLOSE ROUTINE
DBCLOS 16050-16270

Set working instruction
to location to be c1o§ed :

Set back file to zeroj

Point to fileblock
~of working instruction !

Already closed? _—- " '~ No more back
Coon T files to do? Return’
" Mark closed by .
setting number : Back up working
- of columns to | A instruct ion

. its negative ! ' |
. L

Real file? " —r : Close it
- Mark unit# '

Point to ‘Free -

instruction of '

subfile ' %

Join instruct? et Satr back file i
to right hand |
file _

Chain instruct? f; "+ End of chain?

/S File pointed to
© by this instr open?

Advance working
Cinstruction

Advance Working
Instruction to
Sub~imstruction

Appendix 4. Interfacing other programs to use the WCR database routines
FORTRAN

There are three calls here which must be used in place of corresponding

standard FORTRAN i/o statements in your programs:

CALL DBOPEN(FILNAM,NB) opens a file with the name which is contained
as ASCII characters in the LOGICAL*1 array FILNAM. The last character must be
followed by a binary 0, FILNAM must be dimensioned for 20 charécters, but
names should be restricted to <13 characters in length., (The subroutine
DBGETF(FILNAM) can be called to prompt the user and set up the filename with
the trailing 0.) The returned INTEGER NB gives the number of columns in the

table.

CALL DBGET(EF,ND,D) gets a line of data into the REAL azrray D in
positions D(1),.D(NB). This is a row of the final table either as read from an
actual file or as constructed from 1 to 10 different files. The INTEGER ND is
the dimension of the array D which must be large enough to handle all
intermediate computions; probably at least 100, but increased as necessary.
Some bounds checking is done. For the pseudofiles containing large amounts of
CTD data, dimensions of 500-1000 are required. The LOGICAL*l variable EF

returns .TRUE. when end of file condition has been reached.
CALL DBCLOS closes out data base files.

CALL DBCLR clears the workspace for the database routines.

For linking the task, one must include <WCRDB.PGM>DBCOM and <WCRDB.PGM>DBOPEN
with the modules one has written. Note that in building an executeable task
under RSX11M, sufficient space should be reserved for file buffers, since maﬁy
pseudofile descriptions may involve opening a fair number of files and later

closing them.

The eXamples shown in figures A4.l1-A%4.5 show various techniques and
problems in interfacing. The first case, DBMEAN (figure A4.1), gives the
simplest case: a program to compute means and standard deviations of each
column of a table. Space is set aside for the working data array, the
filename, the end-of-file flag, and the accumulators for computing means and
standard deviations. The routine GETFIL is used to request the filename, the
file is opened, and lines are read with sums being made until the end of
file. The statistics are then printed and the file is closed. The following

figure shows a sample run of this program along with the input data table.

The next problem for interfacing is retrieving the column names. This
requires including in the user program the COMMON/ DBNAME/ as indicated in the
DBTYPE program in A4,3. This program retrieves the filename from the cormand

line >DBT XXXXXX rather than from the user, but otherwise is straightforward.

One can also read multiple files with the database routines as indicated
in the DBTST program A4.4. The user must include the COMMON/DBUNIT which
passes information concerning the effective unit number of the particular
data file and the area in the D array where the result from this file will
be deposited. NUNIT and NDATA are set upon open; however, it is important

that the DBOPEN call be followed immediately with a DBGET call from that

Cie. A4

TYPE DBMEAN.FTN
Type 4RO 26-Feb-84 23:31:15

C COMPUTE MEANS AND STD. DEV. OF COLUMNS
C
C RESERVE SPACE FOR DATA FROM DB ROUTINES
DIMENSICON D(300)
C SPACE FOR FILE NAME
LOGICAL*l FILNAM(20)
c END OQF FILE FLAG
LOGICAL*L EF
C ACCUMULATORS FOR STATISTICS

INTEGER CNT{(20}
REAL*4 MEAN(20),STDDEV(20)
C INITIALIZE ACCUMULATORS
' DATA MEAN,STDDEV,CNT/40%0.0,20%0/

c REQUEST NAME OF FILE FROM USER

CALL GETFIL{FILNAM)

OPEN FILE NB=NUMBER OF COLUMNS IN TABLE
CALL DBOPEN(FILNAM,NB) '

]

THE NEXT STATEMENT GETS A ROW OF DATA INTO D(l..NB)
EF=.TRUE. WHEN AT END OF FILE

0 CALL DBGET(EF,300,D)
JUMP TO COMPUTE STATS IF END OF FILE
IF(EF} GOTO 200

=) [9]
C‘io 3)

e}

ACCUMULATE RUNNING MEAN, COUNT, RUNNING SUM OF SQUARE DEVIATIONS
DO 16 I=1,NB

IF(D(I).EQ.-999%) GOTO 10

Dl=D(T)-MEAN(I)

CNT(I)=CNT(Ii+1

MEAN(I)=MEAN(I)+D1/CNT(I}

STODEV(I}=STDDEV{I}+DL*(D{I)-MEAN(L})

10 CONTINUE

C GO BACK AND GET NEXT ROW

GOTO 100

C ARRIVE HERE AT EOF

C COMPUTE MEANS AND STD. DEV. FOR EACH COLUMN

200 DO 19 I=1,NB
Di=0
IF(CNT(I}.LE.1) GOTO 19
D1=SQRT(STDDEV(I)/(CNT{(I)-1)}

19 STDDEV(I) =Dl

C PRINT OUT ANSWERS
WRITE(5,3) (CNT(I),I=1,NB)

3 FORMAT(1X,8(I5,5X))
WRITE(5,2) (MEAN(I),I=1,NB)
WRITE(5,2) (STDPDEV(I},I=1,NB)

2 FORMAT(1X,8(F9.4,1X))

¢ CLOSE THE FILE
CALL DBCLGCS
END

>DBT TS.DAT
BNO TEMP
1.0000 20.
2.0000 20
3.0000 18.
4.0000 18.
5.0000 8.
1.0000 20.
2.0000 -999.
3.0000 18.
1.0000 20.
2.0000 20,
3.0000 18.
4.0000 19,
5.0000 18.
>RUN DBMEAN
FILENAME
TS.DAT
13
2.7692 19.
1.4233 0.

12

SAaL
3000

.0000

8000
5000
0000
4000
0000
9000
6000
2000
5000
0000
0000

2667
9698

35
35

35

35

35

13
35.
0.

EVNO

.2200
. 2400

35.
35,
35.
35.
35.

3000
4500
5500
2300
2700

.3300
35.
~3300
35.
35.

2700

4400
6600

.53500

3723
1435

L0000
.0000
L0000
.00C00
.0000
.0000
. 0000
.0000
. 0000
. 0000
L0000
. 0000
L0000

W W W W Wl p) R e -

13
2.0000
0.9129

>TYPE DBTYPE.FTN
Type 4RO 26-Feb-84 14:06:37
c

(]

I 9]

100

RESERVE SPACE FOR DATA AREA k.

dimension A(500}-

END OF FILE FLAG

LOGICAL*1 EF,c(89)

INTEGER*2 CALIGN

MAX NUMBER OF COLUMN NAMES AND RETURNED NUMBER
INTEGER*2 NN,NB

SPACE FOR NAMES

REAL*8 NAME(20)

COMMON/DBNAME /NN, NAME

RETRIEVE FILENAME FROM COMMAND LINE

CALL GETMCR(C(2),iQ) _
IF(iQ.LT.4)STOP * NO FILENAME SPECIFIED'

APPEND BINARY ZERO
CLiQ+2)=0

OPEN THE FILE, GET BACK # COLUMNS NB AND NAMES IN
NAME(1l..NB)

CALL DBOPEN{(C(6),nb)
PRINT OUT NAMES OF COLUMNS

TYPE 1, (NAME(I},I=1,Nb)
FORMAT(1X,10(2X,A8))

RETRIEVE ROW OF TABLE. 500 IS SIZEOF WORKING ARRAY.
EF IS SET TO .TRUE. AT END OF FILE

CALL DBGET(EF,500,D)
IF(EFIGOTO 100

NOT END OF FILE-- TYPE DATA

TYPE 2,(D(I},I=1,Nb)
FORBEATULX, 1O(FT. 4,150

GO BACK AND GET NEXT LINE
GOTO 90
END OF FILE-- CLOSE AND EXIT

CALL DBCLOS

END

A4.3

Fl&.

>TYPE DBTST.FTHN
Type 4R 19-Feb-84 22:57:53

50

1¢0

131

200

DIMENSION D(300)
LOGICAL*1 FIDOL(20)

INTEGER*2 NU(3),ND(3}),NB(3),NR(3)
INTEGER*2 NUNIT,NDATA,NBA,LFQ
LOGICAL*1 EF,EFA(3)
COMMON/DBUNIT/NUNIT,NDATA

DATA EFA/3*.FALSE./

TYPE *, 'NUMBER OF FILES'
ACCEPT *,NRA

DO 50 NA=1,NRA

TYPE *,'FILE NAME ',NA
ACCEPT 1,L,(FIDOL(I),I=l,L)
FORMAT(Q, 20A1)

FIDOL{L+1)=0

CALL DBOPEN(FIDOL,NBA)
NUCNA) =NUNIT
ND{NA}=NDATA
NB(NA}=NBA

CALL DBGET(EF,300,D)
CONTINUE

TYPE *, 'WHICH FILE'
ACCEPT *,LFQ

IF (EFA(LFQ))GOTO 200

TYPE 131,(D(I},I=ND(LFQ), ND(LFQ!+NB(LFQ)-1)
FORMAT(1X, 10F10.4}

NUNIT=NU(LFQ)

CALL DBGET(EF,300,D)

IF(.NOT.EF)GOTO 100

EFA(LFQ)=. TRUE.

CALL DBCLOS

GOTO 100

TYPE *,'END OF FILE'
GOTC 100
END

A4H

Data is retrieved by executing a
GOSUB 10200 statement,

Again the variable EF is set so that an IF test based on EF will inform the
user when to stop reading. The data is returned in the (global) array D
which must be DIMed early in the program. For multiple files, the variables

NUNIT must be set before calling 10200,
Finally, the file is closed by using a
GOSyUB 10300

(with NUNIT set in case of multiple files).

The clear workspace call is
GOSUB 10400

Figures A4.6, A4.7 and A4.8 are the BASIC analogues of the A4.l to A4.3
respectively. Refer to the previous discussione for clarification of the
purpose of various statements. Most of the variables used in the database
routines are named with a letter followed by a number (except for I and J) so
that if you avoid these names, you shoul&n’t conflict with my routines;

however, it would do no harm to check carefully!

Fle

Smsﬂt&% OF CoLumpms

10
20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380

REM COMPUTE MEANS AND STD DEV OF COLUMNS
REM
REM RESERVE SPACE FOR DATA, INITIALIZE

DIM D(300):GOSUB 10000
REM SPACE FOR ACCUMULATORS

DIM CNT(20) ,MEAN(20),STDDEV(20)
REM
REM GET FILE NAME

INPUT “"FILENAME";FI$

REM OPEN FILE FI$, RETURN NB = NUMBER OF COLS.
GOSUB 10100

REM

REM GET LINE OF DATA INTO D(1l..NB), RETURN EF=TRUE AT EOF
GOSUB 10200

REM JUMP TO COMPUT STATS AT EOF

IF EF THEN 280

REM ACCUMULATE STATS

FOR I=1 TO NB

IF D{I}=-999 THEN 230

D1=D(I)-MEAN(I) :CNT(I)=CNT(I}+l
MEAN(I)=MEAN(I)+DL/CNT(I)
STDDEV(I)=STDDEV(T)+D1*(D(I)-MEAN{I})

NEXT I

REM GO BACK FOR NEXT ROW

GOTO 140

REM

REM ARRIVE HERE AT EOF, COMPUTE STATS

FOR I=1 TO NB

D1=0:IF CNT(I)>1 THEN D1=SQR(STDDEV(I}/(CNT(I)-1))
STDDEV(I)=Dl

NEXT I

REM PRINT ANSWERS :

FOR I=1 TO NB:PRINT CNT(I},:NEXT I:PRINT
FOR I=1 TO NB:PRINT MEAN(I},:NEXT I:PRINT
FOR I=] TO NB:PRINT STDDEV(I},:NEXT I:PRINT
REM CLOSE FILE

GOSUB 10300

END

A4 b

— TYPE DATA TABLE

I P N

10 REM RESERVE SPACE AND INITIALIZE

20 DIM D{(300):GOSUB 10000

30 REM

40 REM GET FILENAME

50 INPUT "FILENAME";FIS

60 REM OPEN AND GET BACK NB (NUMBER OF COLUMNS)
70 GOSUB 10100

80 REM

90 REM PRINT NAMES _

100 FOR I=1 TO NB:PRINT N$(I),:NEXT I:PRINT
110 REM .
120 REM GET DATA

130 GOSUB 10200 :

140 REM ON EOF CLOSE FILE AND STOP

150 IF EF THEN GOSUB 10300:END

160 REM ELSE PRINT DATA

170 FOR I=1 TO NB:PRINT D(I},:NEXT I:PRINT
180 GOTO 130 '

HMuLTIPLE FiLES

10 DIM D(300):GOSUB 10000

20 DIM NU(3),ND(3),NB(3),NR(3},EF(3}
30 INPUT "NUMBER OF FILES";:NR

40 FOR NA=1 TO NR

50 INPUT "FILENAME”;FIS:GOSUB 10100
60 NU(NA)=NUNIT:ND(NA)=ND:NB(NA}=}NR
70 GOSUB 10200 -

80 NEXT NA

100 INPUT "WHICH FILE";LF

-110 IF EF(LF) THEN 200

120 FOR I=ND(LF} TO ND(LF)+MB(LF)-1:PRINT D(I},:NEXT I:PRINT
130 NUNIT=NU(LF}:GOSUB 10200

140 IF EF THEN EF(LF)=-1

150 GOTO 100

200 PRINT "END OF FILE":GOTO 100

Source codes for the FORTRAN and BASIC routines will be available in the
<WCRDB.PCM> uger area of the WHOI VAX. For the FORTRAN, you need DBOPEN.FOR
and DBCOM.FOR while the menu-driven routines are DBMENU.FOR, DBMENU2.FOR; for
BASIC you need DBOPEM.BAS (Microsoft) .CBM (Commodore 8032) .APP (Apple). The

menu routines are DBMENU.xXxx with the same suffixes.

	warm core rings tech report part 1 of 2
	warm core rings tech report part 2 of 2

