Optics from primary production array from R/V Thomas G. Thompson cruise TT007 in the Equatorial Pacific in 1992 during the U.S. JGOFS Equatorial Pacific (EqPac) project

Website: https://www.bco-dmo.org/dataset/2665
Version: January 29, 1996
Version Date: 1996-01-29

Project
» U.S. JGOFS Equatorial Pacific (EqPac)

Program
» U.S. Joint Global Ocean Flux Study (U.S. JGOFS)
ContributorsAffiliationRole
Trees, Charles C.San Diego State University (SDSU)Principal Investigator
Chandler, Cynthia L.Woods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager


Dataset Description

Optics from primary production array


Methods & Sampling

   PI:              Chuck Trees
   of:              San Diego State University
   dataset:         Bio Optics deployed with Barber's Primary Production Arrays
   dates:           February 10, 1992 to March 08, 1992
   location:        N: 7.0143  S: -12.0315  W: -140.4368  E: -135.0112
   project/cruise:  EQPAC/TT007 - Spring Survey
   ship:            Thomas Thompson
 
   Notes on Data
 
 
 

[ table of contents | back to top ]

Data Files

File
optics_pp.csv
(Comma Separated Values (.csv), 1.42 MB)
MD5:a2d77fcd2cf939b6bb52f9dcec5eb6fb
Primary data file for dataset ID 2665

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
filea unique file number assigned to each data set
stastation number from event log
lat_nnominal latitude (- values are South) whole degrees
eventevent number from event log
date_endend date/time of the data or the mooring deployment (reported as MMDDHHmm)
datedate of data cycle (reported as MMDDYY)
timetime of data cycle (reported as (HHmmss)
parphotosynthetically available radiation at the reported depth uE/m2/sec
fluornatural fluorescense - upwelled radiance at 683 nm nE/m2/ster/sec
depthwater depth of recording instrument meters
tempwater temperature at reported depth deg C


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
Niskin Bottle
Generic Instrument Name
Niskin bottle
Dataset-specific Description
CTD clean rosette (Niskin) bottles were used to collect water samples.
Generic Instrument Description
A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends. The bottles can be attached individually on a hydrowire or deployed in 12, 24, or 36 bottle Rosette systems mounted on a frame and combined with a CTD. Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc.


[ table of contents | back to top ]

Deployments

TT007

Website
Platform
R/V Thomas G. Thompson
Start Date
1992-01-30
End Date
1992-03-13
Description
Purpose: Spring Survey Cruise; 12°N-12°S at 140°W TT007 was one of five cruises conducted in 1992 in support of the U.S. Equatorial Pacific (EqPac) Process Study. The five EqPac cruises aboard R/V Thomas G. Thompson included two repeat meridional sections (12°N - 12°S), 2 equatorial surveys, and a benthic survey (all at 140° W). The scientific objectives of this study were to observe the processes in the Equatorial Pacific controlling the fluxes of carbon and related elements between the atmosphere, euphotic zone, and deep ocean. As luck would have it, the survey window coincided with an El Nino event. A bonus for the research team.


[ table of contents | back to top ]

Project Information

U.S. JGOFS Equatorial Pacific (EqPac)


Coverage: Equatorial Pacific


The U.S. EqPac process study consisted of repeat meridional sections (12°N -12°S) across the equator in the central and eastern equatorial Pacific from 95°W to 170°W during 1992. The major scientific program was focused at 140° W consisting of two meridional surveys, two equatorial surveys, and a benthic survey aboard the R/V Thomas Thompson. Long-term deployments of current meter and sediment trap arrays augmented the survey cruises. NOAA conducted boreal spring and fall sections east and west of 140°W from the R/V Baldridge and R/V Discoverer. Meteorological and sea surface observations were obtained from NOAA's in place TOGA-TAO buoy network.

The scientific objectives of this study were to determine the fluxes of carbon and related elements, and the processes controlling these fluxes between the Equatorial Pacific euphotic zone and the atmosphere and deep ocean. A broad overview of the program at the 140°W site is given by Murray et al. (Oceanography, 5: 134-142, 1992). A full description of the Equatorial Pacific Process Study, including the international context and the scientific results, appears in a series of Deep-Sea Research Part II special volumes:

Topical Studies in Oceanography, A U.S. JGOFS Process Study in the Equatorial Pacific (1995), Deep-Sea Research Part II, Volume 42, No. 2/3.

Topical Studies in Oceanography, A U.S. JGOFS Process Study in the Equatorial Pacific. Part 2 (1996), Deep-Sea Research Part II, Volume 43, No. 4/6.

Topical Studies in Oceanography, A U.S. JGOFS Process Study in the Equatorial Pacific (1997), Deep-Sea Research Part II, Volume 44, No. 9/10.

Topical Studies in Oceanography, The Equatorial Pacific JGOFS Synthesis (2002), Deep-Sea Research Part II, Volume 49, Nos. 13/14.



[ table of contents | back to top ]

Program Information

U.S. Joint Global Ocean Flux Study (U.S. JGOFS)


Coverage: Global


The United States Joint Global Ocean Flux Study was a national component of international JGOFS and an integral part of global climate change research.

The U.S. launched the Joint Global Ocean Flux Study (JGOFS) in the late 1980s to study the ocean carbon cycle. An ambitious goal was set to understand the controls on the concentrations and fluxes of carbon and associated nutrients in the ocean. A new field of ocean biogeochemistry emerged with an emphasis on quality measurements of carbon system parameters and interdisciplinary field studies of the biological, chemical and physical process which control the ocean carbon cycle. As we studied ocean biogeochemistry, we learned that our simple views of carbon uptake and transport were severely limited, and a new "wave" of ocean science was born. U.S. JGOFS has been supported primarily by the U.S. National Science Foundation in collaboration with the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, the Department of Energy and the Office of Naval Research. U.S. JGOFS, ended in 2005 with the conclusion of the Synthesis and Modeling Project (SMP).



[ table of contents | back to top ]