Nutrients; silicate, nitrate plus nitrite, and phosphate from R/V Weatherbird II WB0409, WB0413, WB0506, WB0508 in the Sargasso Sea from 2004-2005 (EDDIES project)

Website: https://www.bco-dmo.org/dataset/3021

Data Type: Cruise Results

Version: 1

Version Date: 2007-10-08

Project

» Eddies Dynamics, Mixing, Export, and Species composition (EDDIES)

Program

» Ocean Carbon and Biogeochemistry (OCB)

Contributors	Affiliation	Role
Bates, Nicholas	Bermuda Biological Station for Research (BBSR)	Principal Investigator
Kosnyrev, Olga	Woods Hole Oceanographic Institution (WHOI)	Data Manager
Copley, Nancy	Woods Hole Oceanographic Institution (WHOI BCO-DMO)	BCO-DMO Data Manager

Abstract

Nutrients; silicate, nitrate plus nitrite, and phosphate from R/V Weatherbird II WB0409, WB0413, WB0506, WB0508 in the Sargasso Sea from 2004-2005.

Table of Contents

- Coverage
- <u>Dataset Description</u>
- Data Files
- Parameters
- Instruments
- Deployments
- <u>Project Information</u>
- Program Information

Coverage

Spatial Extent: N:32.2042 E:-64.063 S:29.723 W:-69.41

Temporal Extent: 2004-06-24 - 2005-08-26

Dataset Description

Nutrients; silicate, nitrate plus nitrite, phospate from Niskin bottle samples taken on all EDDIES WB cruises

dates: 2004 - 2005 **location:** Sargasso Sea

project/cruise: EDDIES/WB0409 2004 Transect 1 (EDT1)

EDDIES/WB0413 2004 Transect 2 (EDT2) EDDIES/WB0506 2005 Transect 1 (EDT3) EDDIES/WB0508 2005 Transect 2 (EDT4)

platform: R/V Weatherbird II

Methodology: analyses performed by Paul Henderson (phenderson@whoi.edu) at WHOI Nutrients Facility; for sampling methodology, please refer to U.S. JGOFS BATS Method Manual Version 4 (1997). Bermuda Atlantic

Time-Series Study April 1997. Anthony H. Knap, Anthony F. Michaels et al., 136 pp. (link to <u>BATS Method Manual version 4</u> local copy)

Change history: YYMMDD

061211: downloaded original data from EDDIES data web site; EddiesBBSR05 (client) 2006 final.xls;

070112: added to OCB database by Nancy Copley and Cyndy Chandler, OCB DMO 071004: downloaded CruiseID_nuts_final.txt files from EDDIES data Web site and prepared for OCB; ammonium data and EDT sample identification codes were not reported with this version of the data

OCB DMO note: match station number in cruise event log to determine sampling location, date and time; depth_n estimated from depth and added to enable merge with bottle data; these data are reported in umol/kg for which the conversion is roughly: $N_umol/kg = N_umol/L / 1.025$

Analysis Note: files listing those data that are from the sample rerun: WB Silicate reruns

[table of contents | back to top]

Data Files

File

nutrients_WB.csv(Comma Separated Values (.csv), 47.78 KB)

MD5:bd6d3ca3377972f0bd07185783c7ae76

Primary data file for dataset ID 3021

[table of contents | back to top]

Parameters

Parameter	Description	Units
Cruise_ID	cruise ID designation code	alphanumeric
sta	station number	dimensionless
Nis	Niskin bottle number	dimensionless
Nis_WB	unique WB sample identification (9&&&&\$\$@@ where &&&& is cruise number, \$\$=ctd station number, @@=niskin number	dimensionless
depth	depth	meters
depth_n	depth, nominal	meters
SiO4_umol_kg	Silicate	micromoles/kilogram
NO3_NO2_umol_kg	Nitrate plus Nitrite	micromoles/kilogram
PO4_umol_kg	Phosphate	micromoles/kilogram

[table of contents | back to top]

Instruments

Dataset- specific Instrument Name	Niskin bottle
Generic Instrument Name	Niskin bottle
	A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends. The bottles can be attached individually on a hydrowire or deployed in 12, 24, or 36 bottle Rosette systems mounted on a frame and combined with a CTD. Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc.

[table of contents | back to top]

Deployments

WB0409

Website	https://www.bco-dmo.org/deployment/57955	
Platform	R/V Weatherbird II	
Start Date	2004-06-23	
End Date	2004-07-02	
Description	EDT1 2004 Transect 1 cruise Funded by: NSF OCE-0241310	

WB0413

Website	https://www.bco-dmo.org/deployment/57960	
Platform	R/V Weatherbird II	
Start Date	2004-08-02	
End Date	2004-08-11	
Description	EDT2 2004 Transect 2 cruise Funded by: NSF OCE-0241310	

WB0506

Website	https://www.bco-dmo.org/deployment/57963	
Platform	R/V Weatherbird II	
Start Date	2005-07-06	
End Date	2005-07-15	
Description	EDT3 2005 Transect 1 cruise Funded by: NSF OCE-0241310	

WB0508

Website	https://www.bco-dmo.org/deployment/57966	
Platform	R/V Weatherbird II	
Start Date	2005-08-17	
End Date	2005-08-26	
Description	EDT4 2005 Transect 2 Funded by: NSF OCE-0241310	

[table of contents | back to top]

Project Information

Eddies Dynamics, Mixing, Export, and Species composition (EDDIES)

Website: http://science.whoi.edu/users/olga/eddies/EDDIES Project.html

Coverage: Sargasso Sea

The original title of this project from the NSF award is: Collaborative Research: Impacts of Eddies and Mixing on Plankton Community Structure and Biogeochemical Cycling in the Sargasso Sea".

Prior results have documented eddy-driven transport of nutrients into the euphotic zone and the associated accumulation of chlorophyll. However, several key aspects of mesoscale upwelling events remain unresolved by the extant database, including: (1) phytoplankton physiological response, (2) changes in community

structure, (3) impact on export out of the euphotic zone, (4) rates of mixing between the surface mixed layer and the base of the euphotic zone, and (5) implications for biogeochemistry and differential cycling of carbon and associated bioactive elements. This leads to the following hypotheses concerning the complex, non-linear biological regulation of elemental cycling in the ocean:

H1: Eddy-induced upwelling, in combination with diapycnal mixing in the upper ocean, introduces new nutrients into the euphotic zone.

H2: The increase in inorganic nutrients stimulates a physiological response within the phytoplankton community.

H3: Differing physiological responses of the various species bring about a shift in community structure.

H4: Changes in community structure lead to increases in export from, and changes in biogeochemical cycling within, the upper ocean.

Publications

Andrews, J.E., Hartin, C., and Buesseler, K.O.. "7Be Analyses in Seawater by Low Background Gamma-Spectroscopy.," Journal of Radioanalytical and Nuclear Chemistry, v.277, 2008, p. 253.

Andrews, J.E., Hartin, C., Buesseler, K.O.. "7Be Analyses in Seawater by Low Background Gamma-Spectroscopy," Journal of Radioanalytical and Nuclear Chemistry, v.277, 2008, p. 253.

Benitez-Nelson, C.R. and McGillicuddy, D.J.. "Mesoscale Physical-Biological-Biogeochemical Linkages in the Open Ocean: An Introduction to the Results of the E-Flux and EDDIES Programs.," Deep Sea Research II, v.55, 2008, p. 1133.

Benitez-Nelson, C.R. and McGillicuddy, D.J.. "Mesoscale Physical-Biological-Biogeochemical Linkages in the Open Ocean: An Introduction to the Results of the E-Flux and EDDIES Programs," Deep-Sea Research II, v.55, 2008, p. 1133.

Bibby, T.S., Gorbunov, M.Y., Wyman, K.W., Falkowski, P.G. "Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans," Deep-Sea Research Part II: Topical Studies in Oceanography, v.55, 2008, p. 1310.

Buesseler, K.O., Lamborg, C., Cai, P., Escoube, R., Johnson, R., Pike, S., Masque, P., McGillicuddy, D.J., Verdeny, E.. "Particle Fluxes Associated with Mesoscale Eddies in the Sargasso Sea," Deep Sea Research II, v.55, 2008, p. 1426.

Carlson, C.A., del Giorgio, P., Herdl, G.. "Microbes and the dissipation of energy and respiration: From cells to ecosystems," Oceanography, v.20, 2007, p. 89.

Davis, C.S., and McGillicuddy, D.J.. "Transatlantic Abundance of the N2-Fixing Colonial Cyanobacterium Trichodesmium," Science, v.312, 2006, p. 1517.

Ewart, C.S., Meyers, M.K., Wallner, E., McGillicuddy, D.J., Carlson, C.A.. "Microbial Dynamics in Cyclonic and Anticyclonic Mode-Water Eddies in the Northwestern Sargasso Sea," Deep Sea Research II, v.55, 2008, p. 1334.

Ewart, C.S., Meyers, M.K., Wallner, E., McGillicuddy, D.J., Carlson, C.A.. "Microbial Dynamics in Cyclonic and Anticyclonic Mode-Water Eddies in the Northwestern Sargasso Sea," Deep-Sea Research II, v.55, 2008, p. 1334.

Goldthwait, S.A. and Steinberg, D.K.. "Elevated biomass of mesozooplankton and enhanced fecal pellet flux in cyclonic and mode-water eddies in the Sargasso Sea," Deep-Sea Research Part II: Topical Studies in Oceanography, v.55, 2008, p. 1360.

Greenan, B.J.W.. "Shear and Richardson number in a mode-water eddy," Deep-Sea Research Part II: Topical Studies in Oceanography, v.55, 2008, p. 1161.

Jenkins, W.J., McGillicuddy, D.J., and Lott III, D.E.. "The Distributions of, and Relationship Between 3 He and Nitrate in Eddies," Deep Sea Research II, v.55, 2008, p. 1389.

Jenkins, W.J., McGillicuddy, D.J., Lott III, D.E.. "The Distributions of, and Relationship Between 3 He and Nitrate

in Eddies," Deep-Sea Research II, v.55, 2008, p. 1389.

Ledwell, J.R., McGillicuddy, D.J., and Anderson, L.A.. "Nutrient Flux into an Intense Deep Chlorophyll Layer in a Mode-water Eddy.," Deep Sea Research II, v.55, 2008, p. 1139.

Ledwell, J.R., McGillicuddy, D.J., Anderson, L.A.. "Nutrient Flux into an Intense Deep Chlorophyll Layer in a Modewater Eddy," Deep-Sea Research II, v.55, 2008, p. 1139.

- Li, Q.P. and Hansell, D.A.. "Intercomparison and coupling of MAGIC and LWCC techniques for trace analysis of phosphate in seawater," Analytical Chemica Acta, v.611, 2008, p. 68.
- Li, Q.P., Hansell, D.A., McGillicuddy, D.J., Bates, N.R., Johnson, R.J.. "Tracer-based assessment of the origin and biogeochemical transformation of a cyclonic eddy in the Sargasso Sea," Journal of Geophysical Research, v.113, 2008, p. 10006.
- Li, Q.P., Hansell, D.A., Zhang, J.-Z.. "Underway monitoring of nanomolar nitrate plus nitrite and phosphate in oligotrophic seawater," Limnology and Oceanography: Methods, v.6, 2008, p. 319.
- Li, Q.P., Zhang, J.-Z., Millero, F.J., Hansell, D.A.. "Continuous colorimetric determination of trace ammonium in seawater with a long-path liquid waveguide capillary cell," Marine Chemistry, v.96, 2005, p. 73.

McGillicuddy, D.J., et. al.. "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms," Science, v.316, 2007, p. 1021.

McGillicuddy, D.J., Ledwell, J.R., and Anderson, L.A.. "Response to Comment on "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Bloom".," Science, v.320, 2008.

McGillicuddy, D.J., Ledwell, J.R., Anderson, L.A.. "Response to Comment on "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Bloom"," Science, v.320, 2008.

McGillicuddy, et. al.. "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms.," Science, v.316, 2007, p. 1021.

Mourino B., and McGillicuddy, D.J.. "Mesoscale Variability in the Metabolic Balance of the Sargasso Sea," Limnology & Oceanography, v.51, 2006, p. 2675.

[table of contents | back to top]

Program Information

Ocean Carbon and Biogeochemistry (OCB)

Website: http://us-ocb.org/

Coverage: Global

The Ocean Carbon and Biogeochemistry (OCB) program focuses on the ocean's role as a component of the global Earth system, bringing together research in geochemistry, ocean physics, and ecology that inform on and advance our understanding of ocean biogeochemistry. The overall program goals are to promote, plan, and coordinate collaborative, multidisciplinary research opportunities within the U.S. research community and with international partners. Important OCB-related activities currently include: the Ocean Carbon and Climate Change (OCCC) and the North American Carbon Program (NACP); U.S. contributions to IMBER, SOLAS, CARBOOCEAN; and numerous U.S. single-investigator and medium-size research projects funded by U.S. federal agencies including NASA, NOAA, and NSF.

The scientific mission of OCB is to study the evolving role of the ocean in the global carbon cycle, in the face of environmental variability and change through studies of marine biogeochemical cycles and associated ecosystems.

The overarching OCB science themes include improved understanding and prediction of: 1) oceanic uptake and

release of atmospheric CO2 and other greenhouse gases and 2) environmental sensitivities of biogeochemical cycles, marine ecosystems, and interactions between the two.

The OCB Research Priorities (updated January 2012) include: ocean acidification; terrestrial/coastal carbon fluxes and exchanges; climate sensitivities of and change in ecosystem structure and associated impacts on biogeochemical cycles; mesopelagic ecological and biogeochemical interactions; benthic-pelagic feedbacks on biogeochemical cycles; ocean carbon uptake and storage; and expanding low-oxygen conditions in the coastal and open oceans.

[table of contents | back to top]