Surface transects for arsenic speciation, antimony speciation, and alkaline phosphatase activity from R/V Knorr cruise KN204-01 in the Subtropical North Atlantic Ocean in 2011 (U.S. GEOTRACES NAT project)

Website: https://www.bco-dmo.org/dataset/3830
Data Type: Cruise Results
Version: 1
Version Date: 2013-01-03

Project
» U.S. GEOTRACES North Atlantic Transect (GA03) (U.S. GEOTRACES NAT)

Program
» U.S. GEOTRACES (U.S. GEOTRACES)
ContributorsAffiliationRole
Cutter, Gregory A.Old Dominion University (ODU)Principal Investigator
Wurl, OliverLeibniz Institute for Baltic Sea Research Warnemunde GermanyContact
McKee, TheresaWoods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager

Abstract
Surface transects for arsenic speciation, antimony speciation, and alkaline phosphatase activity. Data for the concentrations of the dissolved (<0.4 µm) arsenic species: total inorganic As (III+V), arsenite (AsIII), As(V), monomethyl As, dimethyl As, and the activity of the enzyme alkaline phosphatase (unfiltered).


Coverage

Spatial Extent: N:38.6944 E:-24.5337 S:17.417 W:-69.8106
Temporal Extent: 2011-11-08 - 2011-12-09

Dataset Description

Surface transects for arsenic speciation, antimony speciation, and alkaline phosphatase activity

Data for the concentrations of the dissolved (<0.4 µm) arsenic species: total inorganic As (III+V), arsenite (AsIII), As(V), monomethyl As, dimethyl As,  and the activity of the enzyme alkaline phosphatase (unfiltered).

Please note that some US GEOTRACES data may not be final, pending intercalibration results and further analysis. If you are interested in following changes to US GEOTRACES NAT data, there is an RSS feed available via the BCO-DMO US GEOTRACES project page (http://www.bco-dmo.org/project/2066; scroll down and expand the "Datasets" section).


Methods & Sampling

Filtered (0.4 micromole) water samples from the Geotraces surface tow-fish taken at discrete times were placed into 500 mL Teflon FEP bottles, refrigerated, and analyzed within 24 hours of collection. Arsenic and antimony speciation determined using selective hydride generation, liquid nitrogen-cooled trapping, and then revolatilization and determination with gas chromatography/photoionization detection (Cutter et al., 1991; Cutter and Cutter, 2006).

Calibration performed daily via the standard additions method, with a minimum of 4 additions of AsIII, AsV, MMAs, or DMAs depending on the analyses. The slope from the linear fit to these data was then applied to all samples for that day. Detection limits were 25 pmol/L for As(III) and As(III+V), and 50 pmol/L for MMAs and DMAs. Precision was better than 8% (relative standard deviation) for all As species. Alkaline phosphatase enzyme activity was measured using the fluorescence method of Ammerman (1993).


Data Processing Description

Samples analyzed in duplicate or triplicate and means computed.


[ table of contents | back to top ]

Data Files

File
As_AP_surface_GT11.csv
(Comma Separated Values (.csv), 7.80 KB)
MD5:0d4048be2f8f1bb009760b79274717a1
Primary data file for dataset ID 3830

[ table of contents | back to top ]

Related Publications

Ammerman, J. W. (1993). Microbial cycling of inorganic and organic phosphorus in the water column. In P. Kemp, B. Sherr, E. Sherr, and J. Cole (Eds.) Handbook of Methods in Microbial Ecology. Lewis Publ., Florida. https://isbnsearch.org/isbn/9780873715645
Methods
Cutter, G. A., & Cutter, L. S. (2006). Biogeochemistry of arsenic and antimony in the North Pacific Ocean. Geochemistry, Geophysics, Geosystems, 7(5), n/a–n/a. doi:10.1029/2005gc001159 https://doi.org/10.1029/2005GC001159
Methods
Cutter, L. S., Cutter, G. A., & San Diego-McGlone, M. L. C. (1991). Simultaneous determination of inorganic arsenic and antimony species in natural waters using selective hydride generation with gas chromatography/photoionization detection. Analytical Chemistry, 63(11), 1138–1142. doi:10.1021/ac00011a015
Methods

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
cruise_idcruise id text
geofish_stationtowed fish station text
dateDate in the format YYYYMMDD unitless
timeTime HHMM
lat Latitude (South is negative) decimal degrees
lonLongitude (West is negative) decimal degrees
AsIIIArsenite (HAsO32-) nmol/L
TAsTotal inorganic arsenic (AsIII+V) nmol/L
MMAsMonomethyl arsenic nmol/L
DMAsDimethyl arsenic nmol/L
AP_Turnover_TimeAlkaline phosphatase turnover time hours
AP_Turnover_RateAlkaline phosphatase turnover rate h-1
AsArsenic As(V) nanomoles/liter
cruise_partIdentifier for a segment of a leg of a cruise, where a leg may have been broken into parts. dimensionless


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
GeoFish
Generic Instrument Name
GeoFish Towed near-Surface Sampler
Generic Instrument Description
The GeoFish towed sampler is a custom designed near surface (

Dataset-specific Instrument Name
towed undulating vehicle
Generic Instrument Name
towed undulating vehicle
Generic Instrument Description
A towed undulating vehicle is a generic class of instruments. See the data set specific information for a detailed description. These are often prototype instrument packages designed to make very specific measurements.

Dataset-specific Instrument Name
Gas Chromatograph
Generic Instrument Name
Gas Chromatograph
Generic Instrument Description
Instrument separating gases, volatile substances, or substances dissolved in a volatile solvent by transporting an inert gas through a column packed with a sorbent to a detector for assay. (from SeaDataNet, BODC)


[ table of contents | back to top ]

Deployments

KN204-01

Website
Platform
R/V Knorr
Report
Start Date
2011-11-06
End Date
2011-12-11
Description
The US GEOTRACES North Atlantic cruise aboard the R/V Knorr completed the section between Lisbon and Woods Hole that began in October 2010 but was rescheduled for November-December 2011. The R/V Knorr made a brief stop in Bermuda to exchange samples and personnel before continuing across the basin. Scientists disembarked in Praia, Cape Verde, on 11 December. The cruise was identified as KN204-01A (first part before Bermuda) and KN204-01B (after the Bermuda stop). However, the official deployment name for this cruise is KN204-01 and includes both part A and B. Science activities included: ODF 30 liter rosette CTD casts, ODU Trace metal rosette CTD casts, McLane particulate pump casts, underway sampling with towed fish and sampling from the shipboard "uncontaminated" flow-through system. Full depth stations are shown in the accompanying figure (see below). Additional stations to sample for selected trace metals to a depth of 1000 m are not shown. Standard stations are shown in red (as are the ports) and "super" stations, with extra casts to provide large-volume samples for selected parameters, are shown in green. Station spacing is concentrated along the western margin to evaluate the transport of trace elements and isotopes by western boundary currents. Stations across the gyre will allow scientists to examine trace element supply by Saharan dust, while also contrasting trace element and isotope distributions in the oligotrophic gyre with conditions near biologically productive ocean margins, both in the west, to be sampled now, and within the eastern boundary upwelling system off Mauritania, sampled last year. Funding: The cruise was funded by NSF OCE awards 0926204, 0926433 and 0926659. Additional cruise information is available from the Rolling Deck to Repository (R2R): https://www.rvdata.us/search/cruise/KN204-01 Other Relevant Links: ADCP data are available from the Currents ADCP group at the University of Hawaii at the links below:KN204-01A (part 1 of 2011 cruise; Woods Hole, MA to Bermuda)KN204-01B (part 2 of 2011 cruise; Bermuda to Cape Verde)


[ table of contents | back to top ]

Project Information

U.S. GEOTRACES North Atlantic Transect (GA03) (U.S. GEOTRACES NAT)


Coverage: Subtropical western and eastern North Atlantic Ocean (GA03)


Much of this text appeared in an article published in OCB News, October 2008, by the OCB Project Office.

The first U.S. GEOTRACES Atlantic Section will be specifically centered around a sampling cruise to be carried out in the North Atlantic in 2010. Ed Boyle (MIT) and Bill Jenkins (WHOI) organized a three-day planning workshop that was held September 22-24, 2008 at the Woods Hole Oceanographic Institution. The main goal of the workshop, sponsored by the National Science Foundation and the U.S. GEOTRACES Scientific Steering Committee, was to design the implementation plan for the first U.S. GEOTRACES Atlantic Section. The primary cruise design motivation was to improve knowledge of the sources, sinks and internal cycling of Trace Elements and their Isotopes (TEIs) by studying their distributions along a section in the North Atlantic (Figure 1). The North Atlantic has the full suite of processes that affect TEIs, including strong meridional advection, boundary scavenging and source effects, aeolian deposition, and the salty Mediterranean Outflow. The North Atlantic is particularly important as it lies at the "origin" of the global Meridional Overturning Circulation.

It is well understood that many trace metals play important roles in biogeochemical processes and the carbon cycle, yet very little is known about their large-scale distributions and the regional scale processes that affect them. Recent advances in sampling and analytical techniques, along with advances in our understanding of their roles in enzymatic and catalytic processes in the open ocean provide a natural opportunity to make substantial advances in our understanding of these important elements. Moreover, we are motivated by the prospect of global change and the need to understand the present and future workings of the ocean's biogeochemistry. The GEOTRACES strategy is to measure a broad suite of TEIs to constrain the critical biogeochemical processes that influence their distributions. In addition to these "exotic" substances, more traditional properties, including macronutrients (at micromolar and nanomolar levels), CTD, bio-optical parameters, and carbon system characteristics will be measured. The cruise starts at Line W, a repeat hydrographic section southeast of Cape Cod, extends to Bermuda and subsequently through the North Atlantic oligotrophic subtropical gyre, then transects into the African coast in the northern limb of the coastal upwelling region. From there, the cruise goes northward into the Mediterranean outflow. The station locations shown on the map are for the "fulldepth TEI" stations, and constitute approximately half of the stations to be ultimately occupied.

Figure 1. The proposed 2010 Atlantic GEOTRACES cruise track plotted on dissolved oxygen at 400 m depth. Data from the World Ocean Atlas (Levitus et al., 2005) were plotted using Ocean Data View (courtesy Reiner Schlitzer). [click on the image to view a larger version]

Hydrography, CTD and nutrient measurements will be supported by the Ocean Data Facility (J. Swift) at Scripps Institution of Oceanography and funded through NSF Facilities. They will be providing an additional CTD rosette system along with nephelometer and LADCP. A trace metal clean Go-Flo Rosette and winch will be provided by the group at Old Dominion University (G. Cutter) along with a towed underway pumping system.

The North Atlantic Transect cruise began in 2010 with KN199 leg 4 (station sampling) and leg 5 (underway sampling only) (Figure 2).

KN199-04 Cruise Report (PDF)

Figure 2. The red line shows the cruise track for the first leg of the US Geotraces North Atlantic Transect on the R/V Knorr in October 2010.  The rest of the stations (beginning with 13) will be completed in October-December 2011 on the R/V Knorr (courtesy of Bill Jenkins, Chief Scientist, GNAT first leg). [click on the image to view a larger version]
Atlantic Transect Station location map

The section completion effort resumed again in November 2011 with KN204-01A,B (Figure 3).

KN204-01A,B Cruise Report (PDF)

Figure 3. Station locations occupied on the US Geotraces North Atlantic Transect on the R/V Knorr in November 2011.  [click on the image to view a larger version]
Atlantic Transect/Part 2 Station location map

Data from the North Atlantic Transect cruises are available under the Datasets heading below, and consensus values for the SAFe and North Atlantic GEOTRACES Reference Seawater Samples are available from the GEOTRACES Program Office: Standards and Reference Materials

ADCP data are available from the Currents ADCP group at the University of Hawaii at the links below:
KN199-04   (leg 1 of 2010 cruise; Lisbon to Cape Verde)
KN199-05   (leg 2 of 2010 cruise; Cape Verde to Charleston, NC)
KN204-01A (part 1 of 2011 cruise; Woods Hole, MA to Bermuda)
KN204-01B (part 2 of 2011 cruise; Bermuda to Cape Verde)



[ table of contents | back to top ]

Program Information

U.S. GEOTRACES (U.S. GEOTRACES)


Coverage: Global


GEOTRACES is a SCOR sponsored program; and funding for program infrastructure development is provided by the U.S. National Science Foundation.

GEOTRACES gained momentum following a special symposium, S02: Biogeochemical cycling of trace elements and isotopes in the ocean and applications to constrain contemporary marine processes (GEOSECS II), at a 2003 Goldschmidt meeting convened in Japan. The GEOSECS II acronym referred to the Geochemical Ocean Section Studies To determine full water column distributions of selected trace elements and isotopes, including their concentration, chemical speciation, and physical form, along a sufficient number of sections in each ocean basin to establish the principal relationships between these distributions and with more traditional hydrographic parameters;

* To evaluate the sources, sinks, and internal cycling of these species and thereby characterize more completely the physical, chemical and biological processes regulating their distributions, and the sensitivity of these processes to global change; and

* To understand the processes that control the concentrations of geochemical species used for proxies of the past environment, both in the water column and in the substrates that reflect the water column.

GEOTRACES will be global in scope, consisting of ocean sections complemented by regional process studies. Sections and process studies will combine fieldwork, laboratory experiments and modelling. Beyond realizing the scientific objectives identified above, a natural outcome of this work will be to build a community of marine scientists who understand the processes regulating trace element cycles sufficiently well to exploit this knowledge reliably in future interdisciplinary studies.

Expand "Projects" below for information about and data resulting from individual US GEOTRACES research projects.



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]