CTD cast data from R/V Roger Revelle cruise RR1202 in the Southern Ocean (30-60S) in 2012 (Great Calcite Belt project)

Website: https://www.bco-dmo.org/dataset/473970
Version: 08 January 2014
Version Date: 2014-01-08

Project
» The Great Southern Coccolithophore Belt (Great Calcite Belt)
ContributorsAffiliationRole
Balch, William M.Bigelow Laboratory for Ocean SciencesPrincipal Investigator, Contact
Gegg, Stephen R.Woods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager


Dataset Description

CTD Down Casts - RR1202


Methods & Sampling

* Sea-Bird SBE 9 Data File:
* FileName = C:\CTD\RR1202\RR1202-112B06.hex
* Software Version Seasave V 7.21d
* Temperature SN = 4941
* Conductivity SN = 1879
* Number of Bytes Per Scan = 40
* Number of Voltage Words = 5
* Number of Scans Averaged by the Deck Unit = 1
* System UpLoad Time = Mar 18 2012 03:34:01
* NMEA Latitude = 40 15.78 S
* NMEA Longitude = 109 37.63 E
* NMEA UTC (Time) = Mar 18 2012  03:33:51
* Store Lat/Lon Data = Append to Every Scan
** RR1202 RR1202
** Great Belt 2 Great Belt 2
** Latitude 40o 15.782' S
** Longitude 109o 37.635' E
** Event # 20120770333
* System UTC = Mar 18 2012 03:34:01
# nquan = 15
# nvalues = 592                         
# units = specified
# name 0 = scan: Scan Count
# name 1 = prDM: Pressure, Digiquartz [db]
# name 2 = depSM: Depth [salt water, m]
# name 3 = t090C: Temperature [ITS-90, deg C]
# name 4 = c0S/m: Conductivity [S/m]
# name 5 = t190C: Temperature, 2 [ITS-90, deg C]
# name 6 = c1S/m: Conductivity, 2 [S/m]
# name 7 = sbeox0V: Oxygen raw, SBE 43 [V]
# name 8 = bat: Beam Attenuation, Chelsea/Seatech [1/m]
# name 9 = flSP: Fluorescence, Seapoint
# name 10 = par: PAR/Irradiance, Biospherical/Licor
# name 11 = sal00: Salinity, Practical [PSU]
# name 12 = sal11: Salinity, Practical, 2 [PSU]
# name 13 = sbeox0ML/L: Oxygen, SBE 43 [ml/l], WS = 2
# name 14 = flag: flag
# span 0 =       2969,      16625       
# span 1 =      5.543,    303.555       
# span 2 =      5.500,    301.000       
# span 3 =    10.2339,    15.8715       
# span 4 =   3.822456,   4.362125       
# span 5 =    10.2365,    15.8727       
# span 6 =   3.822430,   4.362125       
# span 7 =     2.3546,     2.6443       
# span 8 =     0.5215,     0.7819       
# span 9 = 3.2715e-02, 1.0978e+00       
# span 10 = 7.3978e-01, 8.1863e+02      
# span 11 =    34.7811,    34.9216      
# span 12 =    34.7781,    34.9189      
# span 13 =    5.77219,    6.05822      
# span 14 = 0.0000e+00, 0.0000e+00      
# interval = meters: 0.5                
# start_time = Mar 18 2012 03:33:51 [NMEA time, header]
# bad_flag = -9.990e-29
# <Sensors count="15" >
#   <sensor Channel="1" >
#     <!-- Frequency 0, Temperature -->
#     <TemperatureSensor SensorID="55" >
#       <SerialNumber>4941</SerialNumber>
#       <CalibrationDate>22-Nov-2011 </CalibrationDate>
#       <UseG_J>1</UseG_J>
#       <A>4.35132730e-003</A>
#       <B>6.42190077e-004</B>
#       <C>2.13259987e-005</C>
#       <D>1.67064322e-006</D>
#       <F0_Old>1000.000</F0_Old>
#       <G>4.35113101e-003</G>
#       <H>6.41979575e-004</H>
#       <I>2.12937606e-005</I>
#       <J>1.66918567e-006</J>
#       <F0>1000.000</F0>
#       <Slope>1.00000000</Slope>
#       <Offset>0.0000</Offset>
#     </TemperatureSensor>
#   </sensor>
#   <sensor Channel="2" >
#     <!-- Frequency 1, Conductivity -->
#     <ConductivitySensor SensorID="3" >
#       <SerialNumber>1879</SerialNumber>
#       <CalibrationDate>29-Nov-11</CalibrationDate>
#       <UseG_J>1</UseG_J>
#       <!-- Cell const and series R are applicable only for wide range sensors. -->
#       <SeriesR>0.0000</SeriesR>
#       <CellConst>2000.0000</CellConst>
#       <ConductivityType>0</ConductivityType>
#       <Coefficients equation="0" >
#         <A>0.00000000e+000</A>
#         <B>0.00000000e+000</B>
#         <C>0.00000000e+000</C>
#         <D>0.00000000e+000</D>
#         <M>0.0</M>
#         <CPcor>-9.57000000e-008</CPcor>
#       </Coefficients>
#       <Coefficients equation="1" >
#         <G>-4.15590326e+000</G>
#         <H>5.39097077e-001</H>
#         <I>-7.71437706e-004</I>
#         <J>6.72579504e-005</J>
#         <CPcor>-9.57000000e-008</CPcor>
#         <CTcor>3.2500e-006</CTcor>
#         <!-- WBOTC not applicable unless ConductivityType = 1. -->
#         <WBOTC>0.00000000e+000</WBOTC>
#       </Coefficients>
#       <Slope>1.00000000</Slope>
#       <Offset>0.00000</Offset>
#     </ConductivitySensor>
#   </sensor>
#   <sensor Channel="3" >
#     <!-- Frequency 2, Pressure, Digiquartz with TC -->
#     <PressureSensor SensorID="45" >
#       <SerialNumber>0401</SerialNumber>
#       <CalibrationDate>02-Dec-11</CalibrationDate>
#       <C1>-4.588163e+004</C1>
#       <C2>1.989810e-001</C2>
#       <C3>1.408190e-002</C3>
#       <D1>3.950300e-002</D1>
#       <D2>0.000000e+000</D2>
#       <T1>2.998526e+001</T1>
#       <T2>-2.557400e-004</T2>
#       <T3>4.268350e-006</T3>
#       <T4>1.671990e-009</T4>
#       <Slope>0.99997494</Slope>
#       <Offset>1.74668</Offset>
#       <T5>0.000000e+000</T5>
#       <AD590M>1.117000e-002</AD590M>
#       <AD590B>-8.668320e+000</AD590B>
#     </PressureSensor>
#   </sensor>
#   <sensor Channel="4" >
#     <!-- Frequency 3, Temperature, 2 -->
#     <TemperatureSensor SensorID="55" >
#       <SerialNumber>4943</SerialNumber>
#       <CalibrationDate>22-Nov-2011 </CalibrationDate>
#       <UseG_J>1</UseG_J>
#       <A>4.37964247e-003</A>
#       <B>6.41168176e-004</B>
#       <C>2.24890121e-005</C>
#       <D>2.09823639e-006</D>
#       <F0_Old>1000.000</F0_Old>
#       <G>4.37943702e-003</G>
#       <H>6.40956250e-004</H>
#       <I>2.24569681e-005</I>
#       <J>2.09677218e-006</J>
#       <F0>1000.000</F0>
#       <Slope>1.00000000</Slope>
#       <Offset>0.0000</Offset>
#     </TemperatureSensor>
#   </sensor>
#   <sensor Channel="5" >
#     <!-- Frequency 4, Conductivity, 2 -->
#     <ConductivitySensor SensorID="3" >
#       <SerialNumber>1919</SerialNumber>
#       <CalibrationDate>29-Nov-11</CalibrationDate>
#       <UseG_J>1</UseG_J>
#       <!-- Cell const and series R are applicable only for wide range sensors. -->
#       <SeriesR>0.0000</SeriesR>
#       <CellConst>2000.0000</CellConst>
#       <ConductivityType>0</ConductivityType>
#       <Coefficients equation="0" >
#         <A>0.00000000e+000</A>
#         <B>0.00000000e+000</B>
#         <C>0.00000000e+000</C>
#         <D>0.00000000e+000</D>
#         <M>0.0</M>
#         <CPcor>-9.57000000e-008</CPcor>
#       </Coefficients>
#       <Coefficients equation="1" >
#         <G>-3.99251720e+000</G>
#         <H>5.25640038e-001</H>
#         <I>-9.93453447e-004</I>
#         <J>7.87689910e-005</J>
#         <CPcor>-9.57000000e-008</CPcor>
#         <CTcor>3.2500e-006</CTcor>
#         <!-- WBOTC not applicable unless ConductivityType = 1. -->
#         <WBOTC>0.00000000e+000</WBOTC>
#       </Coefficients>
#       <Slope>1.00000000</Slope>
#       <Offset>0.00000</Offset>
#     </ConductivitySensor>
#   </sensor>
#   <sensor Channel="6" >
#     <!-- A/D voltage 0, Fluorometer, Seapoint -->
#     <FluoroSeapointSensor SensorID="11" >
#       <SerialNumber>SCF 3003</SerialNumber>
#       <CalibrationDate></CalibrationDate>
#       <!-- The following is an array index, not the actual gain setting. -->
#       <GainSetting>2</GainSetting>
#       <Offset>0.000</Offset>
#     </FluoroSeapointSensor>
#   </sensor>
#   <sensor Channel="7" >
#     <!-- A/D voltage 1, PAR/Irradiance, Biospherical/Licor -->
#     <PAR_BiosphericalLicorChelseaSensor SensorID="42" >
#       <SerialNumber>4643</SerialNumber>
#       <CalibrationDate>14 Dec 2009</CalibrationDate>
#       <M>1.00000000</M>
#       <B>0.00000000</B>
#       <CalibrationConstant>1324503311.26000000</CalibrationConstant>
#       <Multiplier>1.00000000</Multiplier>
#       <Offset>-0.01510000</Offset>
#     </PAR_BiosphericalLicorChelseaSensor>
#   </sensor>
#   <sensor Channel="8" >
#     <!-- A/D voltage 2, Transmissometer, Chelsea/Seatech -->
#     <TransChelseaSeatechWetlabCStarSensor SensorID="59" >
#       <SerialNumber>CST-1189DR</SerialNumber>
#       <CalibrationDate>2008 Nov 3</CalibrationDate>
#       <M>19.3070</M>
#       <B>-1.1970</B>
#       <PathLength>0.250</PathLength>
#     </TransChelseaSeatechWetlabCStarSensor>
#   </sensor>
#   <sensor Channel="9" >
#     <!-- A/D voltage 3, Free -->
#   </sensor>
#   <sensor Channel="10" >
#     <!-- A/D voltage 4, Altimeter -->
#     <AltimeterSensor SensorID="0" >
#       <SerialNumber>41832</SerialNumber>
#       <CalibrationDate></CalibrationDate>
#       <ScaleFactor>15.000</ScaleFactor>
#       <Offset>0.020</Offset>
#     </AltimeterSensor>
#   </sensor>
#   <sensor Channel="11" >
#     <!-- A/D voltage 5, Free -->
#   </sensor>
#   <sensor Channel="12" >
#     <!-- A/D voltage 6, Oxygen, SBE 43 -->
#     <OxygenSensor SensorID="38" >
#       <SerialNumber>1129</SerialNumber>
#       <CalibrationDate>23-Nov-11</CalibrationDate>
#       <Use2007Equation>1</Use2007Equation>
#       <CalibrationCoefficients equation="0" >
#         <!-- Coefficients for Owens-Millard equation. -->
#         <Boc>0.0000</Boc>
#         <Soc>0.0000e+000</Soc>
#         <offset>0.0000</offset>
#         <Pcor>0.00e+000</Pcor>
#         <Tcor>0.0000</Tcor>
#         <Tau>0.0</Tau>
#       </CalibrationCoefficients>
#       <CalibrationCoefficients equation="1" >
#         <!-- Coefficients for Sea-Bird equation - SBE calibration in 2007 and later. -->
#         <Soc>5.0382e-001</Soc>
#         <offset>-0.5242</offset>
#         <A>-3.1601e-003</A>
#         <B> 1.0886e-004</B>
#         <C>-2.1050e-006</C>
#         <D0> 2.5826e+000</D0>
#         <D1> 1.92634e-004</D1>
#         <D2>-4.64803e-002</D2>
#         <E> 3.6000e-002</E>
#         <Tau20> 2.2400</Tau20>
#         <H1>-3.3000e-002</H1>
#         <H2> 5.0000e+003</H2>
#         <H3> 1.4500e+003</H3>
#       </CalibrationCoefficients>
#     </OxygenSensor>
#   </sensor>
#   <sensor Channel="13" >
#     <!-- A/D voltage 7, Free -->
#   </sensor>
#   <sensor Channel="14" >
#     <!-- SPAR voltage, Unavailable -->
#   </sensor>
#   <sensor Channel="15" >
#     <!-- SPAR voltage, SPAR/Surface Irradiance -->
#     <SPAR_Sensor SensorID="51" >
#       <SerialNumber>QSR-2200 202227</SerialNumber>
#       <CalibrationDate>2 Feb 2006</CalibrationDate>
#       <ConversionFactor>1781.54000000</ConversionFactor>
#       <RatioMultiplier>1.00000000</RatioMultiplier>
#     </SPAR_Sensor>
#   </sensor>
# </Sensors>
# datcnv_date = Mar 20 2012 23:04:30, 7.21d [datcnv_vars = 11]
# datcnv_in = C:\CTD\rr1202\rr1202-112b06.hex C:\CTD\rr1202\rr1202-112b06.CON
# datcnv_skipover = 0
# datcnv_ox_hysteresis_correction = yes
# wildedit_date = Mar 20 2012 23:08:20, 7.21d
# wildedit_in = C:\CTD\Processing\process\rr1202-112b06.cnv
# wildedit_pass1_nstd = 2.0
# wildedit_pass2_nstd = 20.0
# wildedit_pass2_mindelta = 1.000e-002
# wildedit_npoint = 100
# wildedit_vars = prDM depSM t090C c0S/m t190C c1S/m sbeox0V bat flSP par
# wildedit_excl_bad_scans = yes
# wfilter_date = Mar 20 2012 23:11:57, 7.21d
# wfilter_in = C:\CTD\Processing\process\rr1202-112b06.cnv
# wfilter_excl_bad_scans = yes
# wfilter_action t090C = median, 21
# wfilter_action c0S/m = median, 21
# wfilter_action t190C = median, 21
# wfilter_action c1S/m = median, 21
# wfilter_action sbeox0V = gaussian, 21, 0.3, 0
# wfilter_date = Mar 20 2012 23:15:16, 7.21d
# wfilter_in = C:\CTD\Processing\process\rr1202-112b06.cnv
# wfilter_excl_bad_scans = yes
# wfilter_action sbeox0V = gaussian, 21, 0.3, 0
# alignctd_date = Mar 20 2012 23:51:11, 7.21d
# alignctd_in = C:\CTD\Processing\process\rr1202-112b06.cnv
# alignctd_adv = sbeox0V 3.500
# celltm_date = Mar 20 2012 23:54:28, 7.21d
# celltm_in = C:\CTD\Processing\process\rr1202-112b06.cnv
# celltm_alpha = 0.0200, 0.0000
# celltm_tau = 7.0000, 0.0000
# celltm_temp_sensor_use_for_cond = primary,
# celltm_date = Mar 20 2012 23:57:34, 7.21d
# celltm_in = C:\CTD\Processing\process\rr1202-112b06.cnv
# celltm_alpha = 0.0000, 0.0200
# celltm_tau = 0.0000, 6.0000
# celltm_temp_sensor_use_for_cond = , secondary
# Derive_date = Mar 21 2012 00:01:34, 7.21d [derive_vars = 3]
# Derive_in = C:\CTD\Processing\process\rr1202-112b06.cnv C:\CTD\Processing\process\rr1202-112b06.CON
# derive_time_window_docdt = seconds: 2
# derive_ox_tau_correction = yes
# loopedit_date = Mar 21 2012 00:07:01, 7.21d
# loopedit_in = C:\CTD\Processing\process\rr1202-112b06.cnv
# loopedit_minVelocity = 0.300
# loopedit_surfaceSoak: minDepth = 5.0, maxDepth = 20, useDeckPress = 1
# loopedit_excl_bad_scans = yes
# binavg_date = Mar 21 2012 00:10:32, 7.21d
# binavg_in = C:\CTD\Processing\process\rr1202-112b06.cnv
# binavg_bintype = meters
# binavg_binsize = 0.5
# binavg_excl_bad_scans = yes
# binavg_skipover = 0
# binavg_surface_bin = no, min = 0.000, max = 0.000, value = 0.000
# split_date = Mar 21 2012 00:11:03, 7.21d
# split_in = C:\CTD\Processing\process\rr1202-112b06.cnv
# split_excl_bad_scans = no
# file_type = ascii
*END*


Data Processing Description

BCO-DMO Processing Notes
- Awk written to reformat original .cnv files contributed by Bruce Bowler
- AWK: CTDcnv_2_BCODMO_RR1202.awk
- Header data for CTD data generated from .cnv file headers
- space delimited reformatted to tab delimited
- all records with "#" or "*" ignored
- blank lines ignored
- BCO-DMO header o/p from routine
 


[ table of contents | back to top ]

Data Files

File
CTD_DownCasts_RR1202.csv
(Comma Separated Values (.csv), 37.37 MB)
MD5:0f38998f9870cb9dbd638f140888d0ca
Primary data file for dataset ID 473970

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
DataFileCTD .cnv Data File text
DateDate (UTC) YYYYMMDD
TimeTime (UTC) HHMMSS
EventEvent dimensionless
StationStation Number dimensionless
CastCast Number dimensionless
LatitudeStation Latitude Position (South is negative) decimal degrees
LongitudeStation Longitude Position (West is negative) decimal degrees
scanScan Count dimensionless
prDMPressure Digiquartz db
depSMDepth salt water m
t090CTemperature ITS-90 deg C
c0S_mConductivity S/m
t190CTemperature 2 ITS-90 deg C
c1S_mConductivity 2 S/m
sbeox0VOxygen raw SBE 43 Volts
batBeam Attenuation Chelsea/Seatech 1/m
flSPFluorescence Seapoint volts
parPAR/Irradiance Biospherical/Licor uEinsteins/m2/s
sal00Salinity Practical PSU
sal11Salinity Practical 2 PSU
sbeox0ML_LOxygen SBE 43 WS=2 ml/l
flagflag dimensionless
ISO_DateTime_UTCDate and time (UTC) formatted to ISO 8601:2004(E) standard. The standard takes on the form: YYYY-MM-DDTHH:MM:SS[.xx]Z where the T indicates the start of the time string and Z indicates UTC (example: 2009-08-30T14:05:00.00Z) YYYY-MM-DDTHH:MM:SS[.xx]Z


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
Niskin bottle
Generic Instrument Name
Niskin bottle
Generic Instrument Description
A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends. The bottles can be attached individually on a hydrowire or deployed in 12, 24, or 36 bottle Rosette systems mounted on a frame and combined with a CTD. Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc.

Dataset-specific Instrument Name
LI-COR Biospherical PAR
Generic Instrument Name
LI-COR Biospherical PAR Sensor
Generic Instrument Description
The LI-COR Biospherical PAR Sensor is used to measure Photosynthetically Available Radiation (PAR) in the water column. This instrument designation is used when specific make and model are not known.

Dataset-specific Instrument Name
Fluorometer - Seapoint
Generic Instrument Name
Fluorometer
Generic Instrument Description
A fluorometer or fluorimeter is a device used to measure parameters of fluorescence: its intensity and wavelength distribution of emission spectrum after excitation by a certain spectrum of light. The instrument is designed to measure the amount of stimulated electromagnetic radiation produced by pulses of electromagnetic radiation emitted into a water sample or in situ.

Dataset-specific Instrument Name
SBE-43 DO
Generic Instrument Name
Sea-Bird SBE 43 Dissolved Oxygen Sensor
Generic Instrument Description
The Sea-Bird SBE 43 dissolved oxygen sensor is a redesign of the Clark polarographic membrane type of dissolved oxygen sensors. more information from Sea-Bird Electronics

Dataset-specific Instrument Name
CTD SBE 911plus
Generic Instrument Name
CTD Sea-Bird SBE 911plus
Generic Instrument Description
The Sea-Bird SBE 911 plus is a type of CTD instrument package for continuous measurement of conductivity, temperature and pressure. The SBE 911 plus includes the SBE 9plus Underwater Unit and the SBE 11plus Deck Unit (for real-time readout using conductive wire) for deployment from a vessel. The combination of the SBE 9 plus and SBE 11 plus is called a SBE 911 plus. The SBE 9 plus uses Sea-Bird's standard modular temperature and conductivity sensors (SBE 3 plus and SBE 4). The SBE 9 plus CTD can be configured with up to eight auxiliary sensors to measure other parameters including dissolved oxygen, pH, turbidity, fluorescence, light (PAR), light transmission, etc.). more information from Sea-Bird Electronics

Dataset-specific Instrument Name
WL CSTAR Trans
Generic Instrument Name
Wet Labs CSTAR Transmissometer
Generic Instrument Description
A highly integrated opto-electronic design to provide a low cost, compact solution for underwater measurements of beam transmittance. The instrument is capable of either free space measurements, or through the use of an optical flow tube, flow-through sampling with a pump. It can be used in profiling, moored, or underway applications. more information from Wet Labs


[ table of contents | back to top ]

Deployments

RR1202

Website
Platform
R/V Roger Revelle
Start Date
2012-02-18
End Date
2012-03-23
Description
Original data are available from the NSF R2R data catalog


[ table of contents | back to top ]

Project Information

The Great Southern Coccolithophore Belt (Great Calcite Belt)


Coverage: Southern Ocean. 60W to 120E; 30S to 60S;


Collaborative Research: The Great Southern Coccolithophore Belt

Intellectual merit: Recent advances in satellite remote sensing enable estimation of suspended calcium carbonate (particulate inorganic carbon or 'PIC') from space. This radiative approach is operationally specific to marine coccolithophores (Haptophyceae) and sensitive enough to quantify PIC concentrations in oligotrophic gyres. Global images of suspended PIC taken over the seven years of the MODIS Aqua mission show a 'Great Belt' of PIC near the sub-Antarctic front of the Southern Ocean that circles the globe. This feature occurs every year during austral summer and appears to be within the high-nutrient, low chlorophyll region of the Southern Ocean. The area of the Great Belt is ~88 million km2, 26% of the global ocean. Evidence from several cruises into the Great Belt region of the Atlantic, Indian and Pacific sectors has verified elevated concentrations of coccolithophores; previous work in the Atlantic sector verified high optical scattering from PIC. The few ship observations we have are entirely consistent with the satellite views. In this project, the investigators will systematically study the coccolithophores of the Great Belt guided by the following science goals: (a) identify the coccolithophore species within this belt; (b) measure the abundance of coccolithophores and associated PIC; (c) measure coccolithopore calcification rates; (d) elucidate factors that may limit coccolithophore latitudinal range (e.g. stratification, temperature, macronutrients, trace metals, grazing); (e) demonstrate whether the variability in PIC relates to shallow export flux; (f) define how variability in PIC production relates to the pCO2, total alkalinity and dissolved inorganic carbon budgets; and (g) examine the impact of short-term ocean acidification on coccolithophore growth and calcite dissolution.

The research will involve cruises along the 50 S parallel to sample the Great Belt, during the austral summer. The investigators will use a combination of underway surface sampling (primarily optical and hydrographic) and vertical station profiles (using CTD/rosette and large volume submersible pumps) to address hypotheses related to the above goals. The cruise track will elucidate both zonal and meridional variability in the Great Belt. Controlled carboy incubation experiments will examine the impact of ocean acidification at various future scenarios on coccolithophore growth and dissolution. Dilution experiments will address grazing-related mortality and dissolution questions. Controlled metal-addition incubations will focus on potential iron, zinc and cobalt limitation of the coccolithophores or competition from diatoms related to silica availability. The proposed field observations and metal-addition experiments will provide important information on the current status of the Great Belt in the context of global biogeochemistry. The ocean acidification experiments to be undertaken are more forward-looking in terms of the fate of the Southern Ocean coccolithophores in a future acidified ocean.

Broader impacts: The globally significant size of the Great Belt indicates that it likely plays a major role in global biogeochemistry and climate change feedbacks. Thus, the investigators expect this work to have broad, transformative impacts in biological and chemical oceanography. Ocean acidification from the burning of fossil fuels is predicted to lower the pH of the surface ocean by 0.3 units in the next century and up to 0.7 units - a 5-fold increase in the proton concentration by the year 2300. A major goal of this study is to examine the effects of ocean acidification on coccolithophores in a region of low calcite saturation (i.e., one of the first regions expected to become sub-saturating for calcite). The results of these experiments will therefore be highly relevant to our basic understanding of the marine carbon cycle. Related to career development and Criterion II activities, the project includes field experience on two cruises for NSF REU undergraduates from Maine universities or colleges, providing funds for them to attend a scientific meeting. Participation of undergraduate students from Maine colleges builds capacity in our rural coastal state and helps thwart the serious issue of 'brain drain', in which the best students are leaving Maine to seek opportunity in wealthier, more populated states. A teacher will also participate on the cruises (via the NSF-sponsored ARMADA program). This teacher will develop learning modules for students about such topics as coccolithophores, calcification, export production, metal-plankton interactions, ocean acidification and climate change.

PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Balch, WM; Drapeau, DT; Bowler, BC; Lyczskowski, E; Booth, ES; Alley, D. "The contribution of coccolithophores to the optical and inorganic carbon budgets during the Southern Ocean Gas Exchange Experiment: New evidence in support of the "Great Calcite Belt" hypothesis," JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, v.116, 2011. View record at Web of Science

Poulton, AJ; Young, JR; Bates, NR; Balch, WM. "Biometry of detached Emiliania huxleyi coccoliths along the Patagonian Shelf," MARINE ECOLOGY-PROGRESS SERIES, v.443, 2011, p. 1. View record at Web of Science
 

BOOKS/ONE TIME PROCEEDING
Brown, Michael S, W. Balch, S. Craig, B. Bowler, D. Drapeau, J. Grant. "Optical closure within a Patagonian Shelf coccolithhophore bloom", 06/01/2011-05/31/2012,  2012, "ACCESS'12. Atlantic Canada Coastal & Estuarine Science Society. Dalhousie University, Halifax, Nova Scotia. 10-13 May, 2012.".



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]