DNA extracts from the vicinity of Station ALOHA (22.75 N, 158.0 W) just north of Hawaii from 2007-2015 (C-MORE project, HOT project)

Website: https://www.bco-dmo.org/dataset/517403

Version: 2

Version Date: 2015-03-31

Project

» Center for Microbial Oceanography: Research and Education (C-MORE)

» [Current] Hawaii Ocean Time-series (HOT): 2023-2028; [Previous] Hawaii Ocean Time-series (HOT): Sustaining ocean ecosystem and climate observations in the North Pacific Subtropical Gyre (HOT)

Programs

- » Ocean Carbon and Biogeochemistry (OCB)
- » <u>U.S. Joint Global Ocean Flux Study</u> (U.S. JGOFS)
- » Ocean Time-series Sites (Ocean Time-series)

Contributors	Affiliation	Role
DeLong, Edward	Massachusetts Institute of Technology (MIT-Dept CEE)	Principal Investigator
Nahorniak, Jasmine	Oregon State University (OSU-CEOAS)	Data Manager
Gegg, Stephen R.	Woods Hole Oceanographic Institution (WHOI BCO-DMO)	BCO-DMO Data Manager

Table of Contents

- <u>Dataset Description</u>
 - Methods & Sampling
 - Data Processing Description
- Data Files
- Parameters
- Deployments
- Project Information
- Program Information
- <u>Funding</u>

Dataset Description

DNA extracts from the vicinity of Station ALOHA (22.75 N, 158.0 W) just north of Hawaii.

CMORE RNA and DNA Archive

Goal: The goal of this effort is to provide a time series collection of planktonic microbial DNA and RNA depth profiles from the HOT station, for CMORE research. DNA and RNA samples will be available for researchers to conduct and coordinate taxonomic and functional gene studies, for example using PCR and RT-PCR methods. Where possible, metagenomic datasets will be generated by pyrosequencing for selected profiles, and posted for downloading the blast searching on the MIT-CMORE server (http://genesis2.mit.edu/).

Activity: Collect microbial cell fraction (1.6um prefiltered, >0.22um) from HOT hydrocasts, and extract nucleic acids, for RNA and DNA for downstream analyses by CMORE investigators. Collection depths are 25m, 45m, 75m, 125m, 200m, 500m, 770m and 1000m. Extracted DNA samples will be available for distribution.

Methods & Sampling

DeLong CMORE DNA Sampling protocol

Data Processing Description

DeLong_CMORE_DNA_Sampling_protocol

- # C-MORE HOT DNA extracts data
- # DeLong Lab, Massachusetts Institute of Technology
- # Ed DeLong
- # original file: DeLong_CMORE_DNA_extractsFIN_updateMar2010.xls
- # ingested into BCO-DMO: June 2 2014

[table of contents | back to top]

Data Files

File

dna_extracts_gb.csv(Comma Separated Values (.csv), 25.47 KB)

MD5:685f4f85dc5dbaa1575c94ed36650df8

Primary data file for dataset ID 517403

[table of contents | back to top]

Parameters

Parameter	Description	Units
cruise_id	HOT cruise ID	text
date	date (GMT)	YYYYMMDD
depth	depth	meters
DNA_concentration	DNA Concentration	nanograms/microliter
DNA_yield	DNA yield	nanograms
sta	Station Number	dimensionless
cast	Cast	dimensionless
time	Time of day (GMT)	ННММ
lat	latitude (positive north)	decimal degrees
lon	longitude (positive east)	decimal degrees

Deployments

HOT cruises

Website	https://www.bco-dmo.org/deployment/58879	
Platform	Multiple Vessels	
Report	http://hahana.soest.hawaii.edu/hot/	
Start Date	1988-10-31	
Description	Since October 1988, the Hawaii Ocean Time-series (HOT) program has investigated temporal dynamics in biology, physics, and chemistry at Stn. ALOHA (22°45' N, 158°W), a deep ocean field site in the oligotrophic North Pacific Subtropical Gyre (NPSG). HOT conducts near monthly ship-based sampling and makes continuous observations from moored instruments to document and study NPSG climate and ecosystem variability over semi-diurnal to decadal time scales.	

[table of contents | back to top]

Project Information

Center for Microbial Oceanography: Research and Education (C-MORE)

Website: http://cmore.soest.hawaii.edu/

Coverage: North Pacific Subtropical Gyre (large region around 22 45 N, 158 W)

Project summary

The **Center for Microbial Oceanography: Research and Education** (C-MORE) is a recently established (August 2006; NSF award: EF-0424599) NSF-sponsored Science and Technology Center designed to facilitate a more comprehensive understanding of the diverse assemblages of microorganisms in the sea, ranging from the genetic basis of marine microbial biogeochemistry including the metabolic regulation and environmental controls of gene expression, to the processes that underpin the fluxes of carbon, related bioelements and energy in the marine environment. Stated holistically, C-MORE's primary mission is: *Linking Genomes to Biomes*.

We believe that the time is right to address several major, long-standing questions in microbial oceanography. Recent advances in the application of molecular techniques have provided an unprecedented view of the structure, diversity and possible function of sea microbes. By combining these and other novel approaches with more well-established techniques in microbiology, oceanography and ecology, it may be possible to develop a meaningful predictive understanding of the ocean with respect to energy transduction, carbon sequestration, bioelement cycling and the probable response of marine ecosystems to global environmental variability and climate change. The strength of C-MORE resides in the synergy created by bringing together experts who traditionally have not worked together and this, in turn, will facilitate the creation and dissemination of new knowledge on the role of marine microbes in global habitability.

The new Center will design and conduct novel research, broker partnerships, increase diversity of human resources, implement education and outreach programs, and utilize comprehensive information about microbial life in the sea. The Center will bring together teams of scientists, educators and community members who otherwise do not have an opportunity to communicate, collaborate or design creative solutions to long-term ecosystem scale problems. The Center's research will be organized around four interconnected themes:

- (Theme I) microbial biodiversity,
- (Theme II) metabolism and C-N-P-energy flow,
- (Theme III) remote and continuous sensing and links to climate variability, and

• (Theme IV) ecosystem modeling, simulation and prediction.

Each theme will have a leader to help coordinate the research programs and to facilitate interactions among the other related themes. The education programs will focus on pre-college curriculum enhancements, in service teacher training and formal undergraduate/graduate and post-doctoral programs to prepare the next generation of microbial oceanographers. The Center will establish and maintain creative outreach programs to help diffuse the new knowledge gained into society at large including policymakers. The Center's activities will be dispersed among five partner institutions:

- Massachusetts Institute of Technology,
- Woods Hole Oceanographic Institution,
- Monterey Bay Aquarium Research Institute,
- University of California at Santa Cruz and
- Oregon State University

and will be coordinated at the University of Hawaii at Manoa.

Related Files:

Strategic plan (PDF file)

[Current] Hawaii Ocean Time-series (HOT): 2023-2028; [Previous] Hawaii Ocean Time-series (HOT): Sustaining ocean ecosystem and climate observations in the North Pacific Subtropical Gyre (HOT)

Website: https://hahana.soest.hawaii.edu/hot/

Coverage: North Pacific Subtropical Gyre; 22 deg 45 min N, 158 deg W

Hawai'i Ocean Time-Series Project Summary

This continuing award for the HOT research program sustains the open-ocean climatology of biological, chemical, and physical observations into a 4th decade.

Intellectual Merit

The scientific mission of HOT continues to be monitoring of temporal dynamics in the cycling of carbon and associated bioelements, and observations of the variability of hydrological and ecological properties, heat fluxes, and circulation of the North Pacific Subtropical Gyre (NPSG). The proposed research will rely on shipboard observations and experiments conducted on 10 separate 5-day expeditions per annum along with near-continuous moored platform measurements of air-sea interactions, ocean mixing, and physical characteristics of the deep sea. The HOT program maintains the high-quality suite of biogeochemical and physical measurements required for continued assessment of dynamics in ocean carbon and nutrient pools and fluxes, plankton community structure, ecosystem productivity, and inherent optical properties of the water column. Continuity of these observations improves the value of the dataset for deciphering how lowfrequency natural and anthropogenic climate signals influence ecosystem structure in the NPSG as well as providing up-to-date measurements to place current signals in the longer-term context. Such efforts will continue to aid on-going modeling efforts required for predicting how future habitat perturbations may influence ecosystem dynamics in the NPSG. All HOT program data are publicly available and are frequently used by researchers and policy makers around the world. HOT data provide reference baselines for essential ocean variables, allow for characterization of natural patterns of ocean system variability and associated links to regional climate indices, and support calibration/validation of autonomous in situ and remote (satellite, airborne) sensors.

Broader Impacts

The long-term, continuous HOT data are critical to assess variability on seasonal to decadal time-scales and thus are essential to determine the emergence of anthropogenic signals in the oligotrophic North Pacific. Further sustaining HOT measurements will strengthen our capacity to test hypotheses about poorly understood interactions between ocean dynamics, climate, and biogeochemistry and increase the value of HOT data for understanding the response of ocean ecosystems to both natural and anthropogenic climate perturbations. Over the next 5 years, we will continue to promote the value of HOT research through high

quality, high visibility peer-reviewed journal and book articles, newspaper and newsletter articles, and community outreach. With partners BCO-DMO and OceanSITES we will also continue to strive for a FAIR data model (see data management plan) as metadata standards and conventions evolve in the community. We will continue working with an Earthcube Research Coordination Network for Marine Ecological Time Series (METS) to support efforts that bring together different cross-sections of METS data producers, data users, data scientists, and data managers in large- and small-group formats to foster the necessary dialog to develop FAIR data solutions across multiple time-series. In addition, HOT is a community resource that helps support the research of numerous ocean scientists who rely on the program's infrastructure (ship time, staff, laboratories, equipment) to conduct their research, education, and outreach activities. Moreover, HOT PIs maintain a strong commitment to mentoring and training of undergraduate and graduate students, and will continue these activities as well as facilitates access to the sea by a number of ancillary students and scientists.

NSF Award Abstract:

Long-term observations of ocean physics, biology, and chemistry across decades provide a powerful lens for understanding the response of the oceans to environmental change. This award will continue the Hawaii Ocean Time-series (HOT) research program, which began in 1988, for an additional five years. Continuity of these observations will improve the value of the dataset for deciphering how natural and human-influenced climate signals affect ecosystem structure in the Pacific Ocean. All HOT program data are publicly available and are frequently used by researchers and policy makers around the world. HOT also serves as (1) a testbed for the development of new sensors and methodologies, (2) a calibration/validation site, (3) an invaluable training ground that attracts students and researchers from around the globe, and (4) a forum for international collaboration and capacity building.

The proposed research will rely on shipboard observations and experiments conducted on ten separate five-day expeditions per year along with near-continuous moored platform measurements of air-sea interactions, ocean mixing, and physical characteristics of the deep sea. Observations include biogeochemical and physical measurements required for continued assessment of dynamics in ocean carbon and nutrient pools and fluxes, plankton community structure, ecosystem productivity, and inherent optical properties of the water column. The major program goals and objectives over the next 5 years remain as in prior years and include: (1) sustain high quality, time-resolved oceanographic measurements on the interactions between ocean-climate and ecosystem variability in the North Pacific Subtropical Gyre (NPSG), (2) quantify time-varying (seasonal to decadal) changes in reservoirs and fluxes of carbon and associated bioelements (nitrogen, phosphorus, and silicon), (3) constrain processes controlling air-sea carbon exchange, rates of carbon transformation through the planktonic food web, and fluxes of carbon into the ocean's interior, (4) extend to 40 years a climatology of hydrographic and biogeochemical dynamics from which to gauge anomalous or extreme changes to the NPSG habitat, forming a multi-decadal baseline from which to decipher natural and anthropogenic influences on the NPSG ecosystem, (5) continue to provide scientific and logistical support to ancillary programs that benefit from the temporal context, interdisciplinary science, and regular access to the open sea afforded by HOT program occupation of Station ALOHA, including projects implementing, testing, and validating new methodologies and transformative ocean sampling technologies, and (6) provide unique training and educational opportunities for the next generation of ocean scientists.

[table of contents | back to top]

Program Information

Ocean Carbon and Biogeochemistry (OCB)

Website: http://us-ocb.org/

Coverage: Global

The Ocean Carbon and Biogeochemistry (OCB) program focuses on the ocean's role as a component of the global Earth system, bringing together research in geochemistry, ocean physics, and ecology that inform on and advance our understanding of ocean biogeochemistry. The overall program goals are to promote, plan, and coordinate collaborative, multidisciplinary research opportunities within the U.S. research community and with international partners. Important OCB-related activities currently include: the Ocean Carbon and Climate Change (OCCC) and the North American Carbon Program (NACP); U.S. contributions to IMBER, SOLAS, CARBOOCEAN; and numerous U.S. single-investigator and medium-size research projects funded by U.S. federal agencies including NASA, NOAA, and NSF.

The scientific mission of OCB is to study the evolving role of the ocean in the global carbon cycle, in the face of environmental variability and change through studies of marine biogeochemical cycles and associated ecosystems.

The overarching OCB science themes include improved understanding and prediction of: 1) oceanic uptake and release of atmospheric CO2 and other greenhouse gases and 2) environmental sensitivities of biogeochemical cycles, marine ecosystems, and interactions between the two.

The OCB Research Priorities (updated January 2012) include: ocean acidification; terrestrial/coastal carbon fluxes and exchanges; climate sensitivities of and change in ecosystem structure and associated impacts on biogeochemical cycles; mesopelagic ecological and biogeochemical interactions; benthic-pelagic feedbacks on biogeochemical cycles; ocean carbon uptake and storage; and expanding low-oxygen conditions in the coastal and open oceans.

U.S. Joint Global Ocean Flux Study (U.S. JGOFS)

Website: http://usigofs.whoi.edu/

Coverage: Global

The United States Joint Global Ocean Flux Study was a national component of international JGOFS and an integral part of global climate change research.

The U.S. launched the Joint Global Ocean Flux Study (JGOFS) in the late 1980s to study the ocean carbon cycle. An ambitious goal was set to understand the controls on the concentrations and fluxes of carbon and associated nutrients in the ocean. A new field of ocean biogeochemistry emerged with an emphasis on quality measurements of carbon system parameters and interdisciplinary field studies of the biological, chemical and physical process which control the ocean carbon cycle. As we studied ocean biogeochemistry, we learned that our simple views of carbon uptake and transport were severely limited, and a new "wave" of ocean science was born. U.S. JGOFS has been supported primarily by the U.S. National Science Foundation in collaboration with the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, the Department of Energy and the Office of Naval Research. U.S. JGOFS, ended in 2005 with the conclusion of the Synthesis and Modeling Project (SMP).

Ocean Time-series Sites (Ocean Time-series)

Coverage: Bermuda, Cariaco Basin, Hawaii

Program description text taken from Chapter 1: Introduction from the **Global Intercomparability in a Changing Ocean: An International Time-Series Methods Workshop** report published following the workshop held November 28-30, 2012 at the Bermuda Institute of Ocean Sciences. The full report is available from the workshop Web site hosted by US OCB: http://www.whoi.edu/website/TS-workshop/home

Decades of research have demonstrated that the ocean varies across a range of time scales, with anthropogenic forcing contributing an added layer of complexity. In a growing effort to distinguish between natural and human-induced earth system variability, sustained ocean time-series measurements have taken on a renewed importance. Shipboard biogeochemical time-series represent one of the most valuable tools scientists have to characterize and quantify ocean carbon fluxes and biogeochemical processes and their links to changing climate (Karl, 2010; Chavez et al., 2011; Church et al., 2013). They provide the oceanographic community with the long, temporally resolved datasets needed to characterize ocean climate, biogeochemistry, and ecosystem change.

The temporal scale of shifts in marine ecosystem variations in response to climate change are on the order of several decades. The long-term, consistent and comprehensive monitoring programs conducted by timeseries sites are essential to understand large-scale atmosphere-ocean interactions that occur on interannual to decadal time scales. Ocean time-series represent one of the most valuable tools scientists have to characterize and quantify ocean carbon fluxes and biogeochemical processes and their links to changing climate.

Launched in the late 1980s, the US JGOFS (Joint Global Ocean Flux Study; http://usigofs.whoi.edu) research

program initiated two time-series measurement programs at Hawaii and Bermuda (HOT and BATS, respectively) to measure key oceanographic measurements in oligotrophic waters. Begun in 1995 as part of the US JGOFS Synthesis and Modeling Project, the CARIACO Ocean Time-Series (formerly known as the CArbon Retention In A Colored Ocean) Program has studied the relationship between surface primary production, physical forcing variables like the wind, and the settling flux of particulate carbon in the Cariaco Basin.

The objective of these time-series effort is to provide well-sampled seasonal resolution of biogeochemical variability at a limited number of ocean observatories, provide support and background measurements for process-oriented research, as well as test and validate observations for biogeochemical models. Since their creation, the BATS, CARIACO and HOT time-series site data have been available for use by a large community of researchers.

Data from those three US funded, ship-based, time-series sites can be accessed at each site directly or by selecting the site name from the Projects section below.

[table of contents | back to top]

Funding

Funding Source	Award
NSF Division of Biological Infrastructure (NSF DBI)	DBI-0424599
NSF Division of Ocean Sciences (NSF OCE)	OCE-0926766

[table of contents | back to top]