ODF CTD down casts along the US GEOTRACES East Pacific Zonal Transect from the R/V Thomas G. Thompson TN303 cruise in the tropical Pacific from Peru to Tahiti during 2013 (U.S. GEOTRACES EPZT project)

Website: https://www.bco-dmo.org/dataset/522713
Data Type: Cruise Results
Version: 1
Version Date: 2014-10-30

Project
» U.S. GEOTRACES East Pacific Zonal Transect (GP16) (U.S. GEOTRACES EPZT)

Program
» U.S. GEOTRACES (U.S. GEOTRACES)
ContributorsAffiliationRole
Moffett, James W.University of Southern California (USC-HIMS)Lead Principal Investigator, Contact
Cutter, Gregory A.Old Dominion University (ODU)Co-Principal Investigator
German, Christopher R.Woods Hole Oceanographic Institution (WHOI)Co-Principal Investigator
Gegg, Stephen R.Woods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager

Abstract
ODF CTD down casts along the US GEOTRACES East Pacific Zonal Transect from the R/V Thomas G. Thompson TN303 cruise in the tropical Pacific from Peru to Tahiti during 2013.


Coverage

Spatial Extent: N:-10.25 E:-77.3761 S:-17.5734 W:-152.0006
Temporal Extent: 2013-10-29 - 2013-12-20

Dataset Description

CTD - ODF  Rosette DownCasts 20141030ODF from GEOTRACES EPZT cruise (TN303)

SMDEPTH IS SAUNDERS-MANTYLA DEPTH (INTEGRATED; USES DYNAMIC HEIGHT)
FMDEPTH IS FOFONOFF-MILLARD DEPTH (NON-INTEGRATED; ALSO USED BY SBE)


[ table of contents | back to top ]

Data Files

File
ODF_DownCasts_v30Oct2014.csv
(Comma Separated Values (.csv), 43.63 MB)
MD5:8d4eeabdbd91654d38b9f59907949f6a
Primary data file for dataset ID 522713

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
DATASET_IDCTD Dataset Identifier text
EXPOCODEexpedition code assigned by the CCHDO: NODCShipCodeYearMonthDay text
SECT_IDcruise section identification number text
GEOTRC_EVENTNOGEOTRACES Event Number dimensionless
STNNBRStation Number dimensionless
CASTNOCast Number dimensionless
DATEStation Date (GMT) in the format YYYYMMDD unitless
TIMEStation Time (GMT) HHMM
LATITUDEStation Latitude (South is negative) decimal degrees
LONGITUDEStation Longitude (West is negative) decimal degrees
BTMDEPTHMultibeam bottom depth of the cast meters
INSTRUMENT_IDInstrument Id (from CTD profile data headers) dimensionless
CTDPRSCTD Pressure DBARS
CTDPRS_FLAG_WCTD pressure quality flag (see WOCE Hydrographic Program Quality Flags) dimensionless
CTDTMPCTD Temperature; ITS-90 degrees celsius
CTDTMP_FLAG_WCTD temperature quality flag (see WOCE Hydrographic Program Quality Flags) dimensionless
CTDSALCTD Salinity PSS-78
CTDSAL_FLAG_WCTD salinity quality flag (see WOCE Hydrographic Program Quality Flags) dimensionless
CTDOXYCTD Oxygen UMOL/KG
CTDOXY_FLAG_WCTD oxygen quality flag(see WOCE Hydrographic Program Quality Flags) dimensionless
TRANSMLight Transmission (0-5VDC) volts
TRANSM_FLAG_WLight Transmission quality flag (see WOCE Hydrographic Program Quality Flags) dimensionless
FLUORMFluorescence (0-5VDC) volts
FLUORM_FLAG_WFluorescence quality flag (see WOCE Hydrographic Program Quality Flags) dimensionless
TURBDTYTurbidity (0-5VDC) volts
TURBDTY_FLAG_WTurbidity quality flag (see WOCE Hydrographic Program Quality Flags) dimensionless
NOAAORPNOAA Oxygen Reduction Potential (ORP) mvolts
NOAAORP_FLAG_WNOAA Oxygen Reduction Potential (ORP) quality flag (see WOCE Hydrographic Program Quality Flags) dimensionless
SMDEPTHSMDEPTH IS SAUNDERS-MANTYLA DEPTH (INTEGRATED; USES DYNAMIC HEIGHT) METERS
SMDEPTH_FLAG_WSMDepth quality flag (see WOCE Hydrographic Program Quality Flags) dimensionless
FMDEPTHFMDEPTH IS FOFONOFF-MILLARD DEPTH (NON-INTEGRATED; ALSO USED BY SBE) METERS
FMDEPTH_FLAG_WFMDepth quality flag (see WOCE Hydrographic Program Quality Flags) dimensionless
CTDNOBSCTD Number of Observations dimensionless
CTDETIMECTD Elapsed Time SECONDS
ISO_DATE_TIMEDate/Time (ISO formatted) YYYY-MM-DDTHH:MM:SS[.xx]Z


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
Generic Instrument Name
CTD Sea-Bird SBE 911plus
Generic Instrument Description
The Sea-Bird SBE 911 plus is a type of CTD instrument package for continuous measurement of conductivity, temperature and pressure. The SBE 911 plus includes the SBE 9plus Underwater Unit and the SBE 11plus Deck Unit (for real-time readout using conductive wire) for deployment from a vessel. The combination of the SBE 9 plus and SBE 11 plus is called a SBE 911 plus. The SBE 9 plus uses Sea-Bird's standard modular temperature and conductivity sensors (SBE 3 plus and SBE 4). The SBE 9 plus CTD can be configured with up to eight auxiliary sensors to measure other parameters including dissolved oxygen, pH, turbidity, fluorescence, light (PAR), light transmission, etc.). more information from Sea-Bird Electronics


[ table of contents | back to top ]

Deployments

TN303

Website
Platform
R/V Thomas G. Thompson
Report
Start Date
2013-10-25
End Date
2013-12-20
Description
A zonal transect in the eastern tropical South Pacific (ETSP) from Peru to Tahiti as the second cruise of the U.S.GEOTRACES Program. This Pacific section includes a large area characterized by high rates of primary production and particle export in the eastern boundary associated with the Peru Upwelling, a large oxygen minimum zone that is a major global sink for fixed nitrogen, and a large hydrothermal plume arising from the East Pacific Rise. This particular section was selected as a result of open planning workshops in 2007 and 2008, with a final recommendation made by the U.S.GEOTRACES Steering Committee in 2009. It is the first part of a two-stage plan that will include a meridional section of the Pacific from Tahiti to Alaska as a subsequent expedition. Figure 1. The 2013 GEOTRACES EPZT Cruise Track. [click on the image to view a larger version] Additional cruise information is available from the Rolling Deck to Repository (R2R): http://www.rvdata.us/catalog/TN303


[ table of contents | back to top ]

Project Information

U.S. GEOTRACES East Pacific Zonal Transect (GP16) (U.S. GEOTRACES EPZT)


Coverage: Eastern Tropical Pacific - Transect from Peru to Tahiti (GP16)


From the NSF Award Abstract
The mission of the International GEOTRACES Program (https://www.geotraces.org/), of which the U.S. chemical oceanography research community is a founding member, is "to identify processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean, and to establish the sensitivity of these distributions to changing environmental conditions" (GEOTRACES Science Plan, 2006). In the United States, ocean chemists are currently in the process of organizing a zonal transect in the eastern tropical South Pacific (ETSP) from Peru to Tahiti as the second cruise of the U.S.GEOTRACES Program. This Pacific section includes a large area characterized by high rates of primary production and particle export in the eastern boundary associated with the Peru Upwelling, a large oxygen minimum zone that is a major global sink for fixed nitrogen, and a large hydrothermal plume arising from the East Pacific Rise. This particular section was selected as a result of open planning workshops in 2007 and 2008, with a final recommendation made by the U.S.GEOTRACES Steering Committee in 2009. It is the first part of a two-stage plan that will include a meridional section of the Pacific from Tahiti to Alaska as a subsequent expedition.

This award provides funding for management of the U.S.GEOTRACES Pacific campaign to a team of scientists from the University of Southern California, Old Dominion University, and the Woods Hole Oceanographic Institution. The three co-leaders will provide mission leadership, essential support services, and management structure for acquiring the trace elements and isotopes samples listed as core parameters in the International GEOTRACES Science Plan, plus hydrographic and nutrient data needed by participating investigators. With this support from NSF, the management team will (1) plan and coordinate the 52-day Pacific research cruise described above; (2) obtain representative samples for a wide variety of trace metals of interest using conventional CTD/rosette and GEOTRACES Sampling Systems; (3) acquire conventional JGOFS/WOCE-quality hydrographic data (CTD, transmissometer, fluorometer, oxygen sensor, etc) along with discrete samples for salinity, dissolved oxygen (to 1 uM detection limits), plant pigments, redox tracers such as ammonium and nitrite, and dissolved nutrients at micro- and nanomolar levels; (4) ensure that proper QA/QC protocols are followed and reported, as well as fulfilling all GEOTRACES Intercalibration protocols; (5) prepare and deliver all hydrographic-type data to the GEOTRACES Data Center (and US data centers); and (6) coordinate cruise communications between all participating investigators, including preparation of a hydrographic report/publication.

Broader Impacts: The project is part of an international collaborative program that has forged strong partnerships in the intercalibration and implementation phases that are unprecedented in chemical oceanography. The science product of these collective missions will enhance our ability to understand how to interpret the chemical composition of the ocean, and interpret how climate change will affect ocean chemistry. Partnerships include contributions to the infrastructure of developing nations with overlapping interests in the study area, in this case Peru. There is a strong educational component to the program, with many Ph.D. students carrying out thesis research within the program.

Figure 1. The 2013 GEOTRACES EPZT Cruise Track. [click on the image to view a larger version]



[ table of contents | back to top ]

Program Information

U.S. GEOTRACES (U.S. GEOTRACES)


Coverage: Global


GEOTRACES is a SCOR sponsored program; and funding for program infrastructure development is provided by the U.S. National Science Foundation.

GEOTRACES gained momentum following a special symposium, S02: Biogeochemical cycling of trace elements and isotopes in the ocean and applications to constrain contemporary marine processes (GEOSECS II), at a 2003 Goldschmidt meeting convened in Japan. The GEOSECS II acronym referred to the Geochemical Ocean Section Studies To determine full water column distributions of selected trace elements and isotopes, including their concentration, chemical speciation, and physical form, along a sufficient number of sections in each ocean basin to establish the principal relationships between these distributions and with more traditional hydrographic parameters;

* To evaluate the sources, sinks, and internal cycling of these species and thereby characterize more completely the physical, chemical and biological processes regulating their distributions, and the sensitivity of these processes to global change; and

* To understand the processes that control the concentrations of geochemical species used for proxies of the past environment, both in the water column and in the substrates that reflect the water column.

GEOTRACES will be global in scope, consisting of ocean sections complemented by regional process studies. Sections and process studies will combine fieldwork, laboratory experiments and modelling. Beyond realizing the scientific objectives identified above, a natural outcome of this work will be to build a community of marine scientists who understand the processes regulating trace element cycles sufficiently well to exploit this knowledge reliably in future interdisciplinary studies.

Expand "Projects" below for information about and data resulting from individual US GEOTRACES research projects.



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]