Field collection data for taxa detected in Copepod nauplii guts analyzed at San Francisco State University in 2013 (Food Limitation in Copepod nauplii project)

Website: https://www.bco-dmo.org/dataset/546625

Version: 2

Version Date: 2015-02-11

Project

» Feeding and food limitation in copepod nauplii, the neglected life stage (food limitation in copepod nauplii)

Contributors	Affiliation	Role
Kimmerer, William	San Francisco State University (SFSU)	Principal Investigator
Cohen, Sarah	San Francisco State University (SFSU)	Co-Principal Investigator
Copley, Nancy	Woods Hole Oceanographic Institution (WHOI BCO-DMO)	BCO-DMO Data Manager

Table of Contents

- Dataset Description
 - Methods & Sampling
 - Data Processing Description
- Data Files
- Parameters
- Instruments
- Deployments
- Project Information
- <u>Funding</u>

Dataset Description

Description of plankton tow field collections made in San Francisco Estuary for copepod nauplii feeding studies.

Related Reference:

* Craig, Carrie, Wim J. Kimmerer, and C. Sarah Cohen. 2014. A DNA-based method for investigating feeding by copepod nauplii. Journal of Plankton Research 36 (1): 271-275

Vogt, R.A., T.R. Ignoffo, L.J. Sullivan, J. Herndon, J.H. Stillman, and W. Kimmerer. 2013. Feeding capabilities and limitations in the nauplii of two pelagic estuarine copepods, *Pseudodiaptomus marinus* and *Oithona davisae*. Limnology and Oceanography 58: 2145-2157.

Methods & Sampling

See Methodology (pdf).

Data Processing Description

BCO-DMO Processing:

- added conventional header with dataset name, PI name, version date, reference information
- renamed parameters to BCO-DMO standard
- replaced blanks with underscores
- reformatted date and time
- rearranged columns

- sorted by sample then sequence_count (first 5 samples already sorted this way)

version 2 (2015-02-1): revised lat and lon values for site D41A

<u>sample</u>	site	old lat	old lon	new lat and	<u>lon</u>
TDN22	D41A	38.0422	-122.2438	>38.08472,	-122.3907
TDN24	D41A	38.4506	-122.2464	>38.08472,	-122.3907
TDN27	D41A	38.0749	-122.4068	>38.08472,	-122.3907

original version: 2015-01-15

[table of contents | back to top]

Data Files

File

field_coll.csv(Comma Separated Values (.csv), 6.46 KB)
MD5:1c124ae7fa05dde4cd71625778bdc85b

Primary data file for dataset ID 546625

[table of contents | back to top]

Parameters

Parameter	Description	Units
sequence_id	sample sequence identification	unitless
date	collection date	yyyy-mm-dd
time	time of collection	HH:MM
site	collection site	unitless
lat	latitude; north is positive	decimal degrees
lon	longitude; east is positive	decimal degrees
sal_surf	surface salinity	PSU
sal_bot	bottom salinity	PSU
temp	temperature	degrees Celsius
depth	depth	meters
mesh	net mesh size	microns
tow_description	plankton tow type	unitless
taxon_and_level	taxon and taxonomic level of collected organism	unitless
sequence_count	number of sequences of the particular taxon or group of taxa were found in the sample	sequences
ligase	amount of DNA ligase added	enzyme units

Instruments

Dataset-specific Instrument Name	Automated Sequencer
Generic Instrument Name	Automated DNA Sequencer
Dataset-specific Description	ABI 3130 Genetic Analyzer
Generic Instrument Description	A DNA sequencer is an instrument that determines the order of deoxynucleotides in deoxyribonucleic acid sequences.

Dataset- specific Instrument Name	HPLC
Generic Instrument Name	High-Performance Liquid Chromatograph
Instrument Description	A High-performance liquid chromatograph (HPLC) is a type of liquid chromatography used to separate compounds that are dissolved in solution. HPLC instruments consist of a reservoir of the mobile phase, a pump, an injector, a separation column, and a detector. Compounds are separated by high pressure pumping of the sample mixture onto a column packed with microspheres coated with the stationary phase. The different components in the mixture pass through the column at different rates due to differences in their partitioning behavior between the mobile liquid phase and the stationary phase.

Dataset-specific Instrument Name	Plankton Net
Generic Instrument Name	Plankton Net
Dataset-specific Description	Mesh size 100 microns or 150 microns
Generic Instrument Description	A Plankton Net is a generic term for a sampling net that is used to collect plankton. It is used only when detailed instrument documentation is not available.

Dataset- specific Instrument Name	Thermal Cycler
Generic Instrument Name	Thermal Cycler
Generic Instrument Description	A thermal cycler or "thermocycler" is a general term for a type of laboratory apparatus, commonly used for performing polymerase chain reaction (PCR), that is capable of repeatedly altering and maintaining specific temperatures for defined periods of time. The device has a thermal block with holes where tubes with the PCR reaction mixtures can be inserted. The cycler then raises and lowers the temperature of the block in discrete, pre-programmed steps. They can also be used to facilitate other temperature-sensitive reactions, including restriction enzyme digestion or rapid diagnostics. (adapted from http://serc.carleton.edu/microbelife/research_methods/genomics/pcr.html)

Deployments

Kimmerer_2013

Website	https://www.bco-dmo.org/deployment/546436
Platform	SFSU RTC
Start Date	2009-09-01
End Date	2014-08-31
Description	Copepod feeding studies

Project Information

Feeding and food limitation in copepod nauplii, the neglected life stage (food limitation in copepod nauplii)

Coverage: San Francisco Estuary

This project will investigate feeding by copepod nauplius larvae, the most abundant metazoans in the sea. It will answer three questions: 1) How does food selection by adults and nauplii differ when they are fed multiple prey species in the laboratory? 2) How does food selection by adults and nauplii differ when they are feeding on natural prey assemblages? and, 3) How do growth, development, and survival differ between copepodites and nauplii when their growth is food limited? Comparative experiments and field-based measurements will contrast the food consumed, and the effects of food limitation, between nauplii and later life stages. This contrast will include attributes of food such as size, taxon, and motility, and will include experiments with cultured prey offered singly or in a mixture, and natural prey, and apply genetic techniques to determine prey consumption by a predatory copepod. Copepods will be collected from the San Francisco Estuary, with four species selected for experiments to span taxonomic groups, sizes, salinity ranges, and general feeding behavior. A variety of techniques will be applied to account for the inevitable biases and limitations of each; all but one have previously been applied in our laboratories. These will include laboratory feeding experiments using cultured prey individually and in mixtures, and experiments using natural prey. Consumption of prey in experimental bottles will be measured as chlorophyll concentration and through particle counts by microscopy and flow cytometry. Radioactively labeled prey will be used in short incubations to determine feeding on particular prey types. Samples from the field will be examined for gut fluorescence. Separate experiments will determine how nauplii and copepodites survive and grow at different concentrations of food. Investigations of feeding by a predatory copepod (Tortanus dextrilobatus) will use molecular techniques to identify mitochondrial and nuclear DNA from diverse suspected prey species. Specific primers will be developed for common zooplankton species consumed by T. dextrilobatus in the laboratory. General primers and screening protocols developed here will be useful for identifying food web interactions in other estuarine communities.

Copepod nauplii are important both in their diverse trophic roles in ocean foodwebs and in the population dynamics of copepods. Nauplii have a completely different feeding apparatus from later stages, and the first feeding stage can be very sensitive to starvation, making these life stages critical to population dynamics. Yet extant copepod population models treat nauplii as miniature adults. This work will provide valuable input to the growing efforts at modeling ocean ecosystems.

Further details from final report (pdf)

[table of contents | back to top]

Funding

Funding Source	Award
NSF Division of Ocean Sciences (NSF OCE)	OCE-0929075