Stoney coral survival experiments on replacement tiles collected from the Coral Coast of Viti Levu, Fiji in 2013 (Killer Seaweeds project)

Website: https://www.bco-dmo.org/dataset/564418
Version: 1
Version Date: 2015-08-14

Project
» Killer Seaweeds: Allelopathy against Fijian Corals (Killer Seaweeds)
ContributorsAffiliationRole
Hay, MarkGeorgia Institute of Technology (GA Tech)Principal Investigator
Gibbs, DavidGeorgia Institute of Technology (GA Tech)Contact
Copley, NancyWoods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager

Abstract
Experiment results testing Janzen-Connell hypothesis in brooding corals: whether juvenile corals experienced distance-dependent mortality near adult conspecifics. This dataset reports survivorship data for Pocillopora damicornis and Seriatopora hystrix replacement tiles collected from the Coral Coast of Viti Levu, Fiji in 2013.


Coverage

Spatial Extent: Lat:-18.215 Lon:177.713
Temporal Extent: 2013-08-16 - 2013-10-02

Dataset Description

Experiment testing Janzen-Connell hypothesis in brooding corals - whether juvenile corals experienced distance-dependent mortality near adult conspecifics.

This dataset includes survivorship data for Pocillopora damicornis and Seriatopora hystrix replacement tiles

Related Datasets:

64 m^2 grid survey
2 m^2 circle survey
survival experiments
survival replacement tiles
array information


Methods & Sampling

Study site characteristics

This study was conducted on reef flats within no-take marine protected areas (MPAs) adjacent to Votua, Vatuo-lailai, and Namada villages along the Coral Coast of Viti Levu, Fiji. These reserves are scattered along 11 km of fringing reef and are separated by ~3-8 km. The reserves have high coral cover (38-56%), low macroalgal cover (1-3%), and a high biomass and diversity of herbivorous fishes (Rasher, Hoey, and Hay 2013; Bonaldo and Hay 2014). The reef flats range from ~1-3 m deep at high tide, extend ~500-600 m from shore to the reef crest, and are typical of exposed reef flats occurring throughout Fjii.

Except during low tides in calm weather, waves push water over the reef front, and water then flows laterally across the reef flats to discharge through channels bisecting the flats. This creates a relatively predictable current direction at most locations.

Survival experiments
To test whether juvenile corals experienced distance-dependent mortality near adult conspecifics, we collected ~5 mm tall fragments of P. damicornis and S. hystrix, selected suitable adult focal colonies (defined below), and attached conspecific fragments 3, 12, 24 and 182 cm up- and down-current from each focal adult. We deployed fragments around focal colonies in Votua village’s MPA, which supports a diverse assemblage of corals covering about 50% of hard substrates (Rasher, Hoey, and Hay 2013). We used fragments from older colonies as proxies for ~6 month old juveniles (Sato 1985) because, despite these species reproducing monthly in some locations (Fan et al. 2002; Kuanui et al. 2008), neither species planulated at our site during the months of this study (August through October 2013).

We used pliers to clip 16 fragments of 30-40 polyps each from the tips of each of 24 large P. damicornis and 24 large S. hystrix colonies in the Votua village MPA. The fragments from each of four source colonies for a species were collected in six rounds over two days. Each round was taken to shore and four fragments (one from each source colony) were epoxied (Emerkit epoxy) onto the unglazed side of 16 2.54 x 2.54 cm tiles. Thus, each tile had fragments from four different colonies and sets of 16 tiles had fragments from the same four colonies. After epoxying, tiles were held in a tub of seawater for ~1 h, allowing the epoxy to harden. Tiles were then cable-tied onto metal racks at ~1 m deep in the MPA and allowed to acclimate for two weeks before deployment in the experiment. Survivorship during acclimation was 100%, producing 384 fragments on 96 tiles for each coral species.

Within the MPA, 10 adult P. damicornis and 10 adult S. hystrix colonies served as focal colonies. Focal colonies: i) were >10 cm at their smallest diameter (10 to 35 cm for P. damicornis and 10 to 75 cm for S. hystrix), ii) had no conspecific colonies within 4 m (so as not to confound effects of the focal colony with effects of nearby conspecifics), iii) were 5-40 cm deep at low tide, and iv) had space for 190 cm PVC pipes to be placed roughly east and west (the predominant current direction was west) without disturbing other corals. Focal colonies were photographed from above and their size determined using ImageJ (Rasband 1997).

Twenty mm diameter by 190 cm long PVC pipes served as platforms to which we attached the tiles. Pipes were anchored to the reef by driving steel rebar through pre-drilled holes and cementing the rebar to the pipe. Notches 2.54 cm long allowed us to cable-tie tiles onto the pipes at distances of 3, 12, 24 and 182 cm from focal colonies. This approach secured all pipes and tiles throughout the experiment. These distances and this scale were chosen to match a previous experiment in the Caribbean that had detected distance dependent mortality of newly settled recruits for a broadcast spawning coral (Marhaver et al. 2013).

Tiles were randomly assigned to positions on pipes. Thus, fragments at each distance and around each conspecific focal colony were random with respect to source colony. Unassigned tiles were kept on the rack as spares (64 fragments on 16 tiles for each coral species).

Every 1-2 d after deployment, we examined all fragments, recording survivorship, consumption, overgrowth by algae, bleaching, or other changes in status.

On some P. damicornis tiles, three or four of the fragments disappeared within a 24 h period between checks on their condition, appearing to have been bitten off. To determine the agents of this localized mortality, we replaced tiles whose four fragments had been eaten with spare tiles holding four healthy fragments around three of the focal colonies that had experienced localized mortality and videotaped the tiles (GoPro II HD) from about 1 m away during the following high tides. Cameras were retrieved at the next low tide and the videos watched.

We evaluated survival patterns using mixed-effects Cox proportional hazards survival models (coxme package, Therneau 2012) in R (R Core Team 2013). Distance and direction from focal colony were fixed effects and focal colony and tile nested within focal colony were random effects because fragments were blocked by tile and focal colony. The size of the focal colony and the depth of the tiles were included as random effects.


Data Processing Description

BCO-DMMO Processing:

- added conventional header with dataset name, PI name, version date
- renamed parameters to BCO-DMO standard
- reformatted date from m/d/yyyy to yyyy-mm-dd
- replaced spaces with underscores
- removed trailing blanks
- moved 1 comment from date to death_type (last) column
- replaced blank cells with nd


[ table of contents | back to top ]

Data Files

File
replacements.csv
(Comma Separated Values (.csv), 9.59 KB)
MD5:65a537cabbe9c3c34738a12af2f4cbff
Primary data file for dataset ID 564418

[ table of contents | back to top ]

Related Publications

Bonaldo, R. M., & Hay, M. E. (2014). Seaweed-Coral Interactions: Variance in Seaweed Allelopathy, Coral Susceptibility, and Potential Effects on Coral Resilience. PLoS ONE, 9(1), e85786. doi:10.1371/journal.pone.0085786
Methods
Marhaver, K. L., Vermeij, M. J. A., Rohwer, F., & Sandin, S. A. (2013). Janzen‐Connell effects in a broadcast‐spawning Caribbean coral: distance‐dependent survival of larvae and settlers. Ecology, 94(1), 146-160. https://www.jstor.org/stable/23435677
Related Research
Rasher, D. B., Hoey, A. S., & Hay, M. E. (2013). Consumer diversity interacts with prey defenses to drive ecosystem function. Ecology, 94(6), 1347–1358. doi:10.1890/12-0389.1
Methods
Sato, M. (1985). Mortality and growth of juvenile coral Pocillopora damicornis (Linnaeus). Coral Reefs, 4(1), 27–33. doi:10.1007/bf00302201 https://doi.org/10.1007/BF00302201
Methods
Therneau, T. (2012). coxme: mixed effects Cox models. R package version 2.2-3. Vienna, Austria: R Foundation for Statistical Computing.
Software

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
species#Species unitless
polypsNumber of polyps polyps
attachmentMethod of attachment to tile unitless
tileTile Identification unitless
tile_batchTile processing batch number unitless
pipePipe Number unitless
directionDirection (east or west) unitless
dist_focal_colDistance from focal colony (cm) cm
tile_loc_codeTile location (Pipe number+direction+distance) unitless
fragmentFragment number on tile (clockwise from top left) unitless
date_deployedDate coral deployed around focal colony yyyy-mm-dd
lat_approxApproximate latitude; north is positive decimal degrees
lon_approxApproximate longitude; east is positive decimal degrees
date_bleach_decapDate of fragment's bleaching or partial decapitation yyyy-mm-dd
days_bleach_decapDays until fragment's bleaching or partial decapitation after deployment on array days
bleach_decapFragment bleached or partially decapitated unitless
date_deadDate of fragment's death; disappearance; or decapitation yyyy-mm-dd
days_bleach_deadDays until fragment's death; disappearance; or decapitation after deployment on array days
date_removalDate of fragment's removal from reef yyyy-mm-dd
mass_mortFragment died during mass mortality event. 0= never died from mass mort (either didn't die or died for other reasons); 1= from mass mortality unitless
not_mass_mortFragment died but not during a mass mortality event. Excludes all fragments that experienced mass mortality but leaves the rest of the replicate in. 0= no death; 1= death but not from mass mortality unitless
mass_mort_replReplicate died from mass mortality. Excludes all fragments from a replicate that experienced any mass mortality. 0= no death; 1= death but not from mass mortality unitless
diedFragment died from any cause. 0= no death; 1= death unitless
death_typeType of death unitless

[ table of contents | back to top ]

Deployments

Fiji_2013

Website
Platform
Hay_GaTech
Start Date
2013-08-13
End Date
2013-10-09
Description
Studies of corals and seaweed were conducted on reef flats within no-take marine protected areas (MPAs) adjacent to Votua, Vatuo-lailai, and Namada villages along the Coral Coast of Viti Levu, Fiji in 2013.


[ table of contents | back to top ]

Project Information

Killer Seaweeds: Allelopathy against Fijian Corals (Killer Seaweeds)

Coverage: Viti Levu, Fiji (18º13.049’S, 177º42.968’E)


Extracted from the NSF award abstract:

Coral reefs are in dramatic global decline, with reefs commonly converting from species-rich and topographically-complex communities dominated by corals to species- poor and topographically-simplified communities dominated by seaweeds. These phase-shifts result in fundamental loss of ecosystem function. Despite debate about whether coral-to-algal transitions are commonly a primary cause, or simply a consequence, of coral mortality, rigorous field investigation of seaweed-coral competition has received limited attention. There is limited information on how the outcome of seaweed-coral competition varies among species or the relative importance of different competitive mechanisms in facilitating seaweed dominance. In an effort to address this topic, the PI will conduct field experiments in the tropical South Pacific (Fiji) to determine the effects of seaweeds on corals when in direct contact, which seaweeds are most damaging to corals, the role allelopathic lipids that are transferred via contact in producing these effects, the identity and surface concentrations of these metabolites, and the dynamic nature of seaweed metabolite production and coral response following contact. The herbivorous fishes most responsible for controlling allelopathic seaweeds will be identified, the roles of seaweed metabolites in allelopathy vs herbivore deterrence will be studied, and the potential for better managing and conserving critical reef herbivores so as to slow or reverse conversion of coral reef to seaweed meadows will be examined.

Preliminary results indicate that seaweeds may commonly damage corals via lipid- soluble allelochemicals. Such chemically-mediated interactions could kill or damage adult corals and produce the suppression of coral fecundity and recruitment noted by previous investigators and could precipitate positive feedback mechanisms making reef recovery increasingly unlikely as seaweed abundance increases. Chemically-mediated seaweed-coral competition may play a critical role in the degradation of present-day coral reefs. Increasing information on which seaweeds are most aggressive to corals and which herbivores best limit these seaweeds may prove useful in better managing reefs to facilitate resilience and possible recovery despite threats of global-scale stresses. Fiji is well positioned to rapidly use findings from this project for better management of reef resources because it has already erected >260 MPAs, Fijian villagers have already bought-in to the value of MPAs, and the Fiji Locally-Managed Marine Area (FLMMA) Network is well organized to get information to villagers in a culturally sensitive and useful manner.

The broader impacts of this project are far reaching. The project provides training opportunities for 2-2.5 Ph.D students and 1 undergraduate student each year in the interdisciplinary areas of marine ecology, marine conservation, and marine chemical ecology. Findings from this project will be immediately integrated into classes at Ga Tech and made available throughout Fiji via a foundation and web site that have already set-up to support marine conservation efforts in Fiji and marine education efforts both within Fiji and internationally. Business and community leaders from Atlanta (via Rotary International Service efforts) have been recruited to help organize and fund community service and outreach projects in Fiji -- several of which are likely to involve marine conservation and education based in part on these efforts there. Media outlets (National Geographic, NPR, Animal Planet, Audubon Magazine, etc.) and local Rotary clubs will be used to better disseminate these discoveries to the public.

PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH

Rasher DB, Stout EP, Engel S, Kubanek J, and ME Hay. "Macroalgal terpenes function as allelopathic agents against reef corals", Proceedings of the National Academy of Sciences, v. 108, 2011, p. 17726.

Beattie AJ, ME Hay, B Magnusson, R de Nys, J Smeathers, JFV Vincent. "Ecology and bioprospecting," Austral Ecology, v.36, 2011, p. 341.

Rasher DB and ME Hay. "Seaweed allelopathy degrades the resilience and function of coral reefs," Communicative and Integrative Biology, v.3, 2010.

Hay ME, Rasher DB. "Corals in crisis," The Scientist, v.24, 2010, p. 42.

Hay ME and DB Rasher. "Coral reefs in crisis: reversing the biotic death spiral," Faculty 1000 Biology Reports 2010, v.2, 2010.

Rasher DB and ME Hay. "Chemically rich seaweeds poison corals when not controlled by herbivores", Proceedings of the National Academy of Sciences, v.107, 2010, p. 9683.



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]