MOCNESS-CTD data from R/V Atlantis AT21-02 and AT26-15 in the Barbados seeps and Gulf of Mexico, from 2012 and 2014 (SEEPC project)

Website: https://www.bco-dmo.org/dataset/658408
Data Type: Cruise Results
Version:
Version Date: 2016-09-30

Project
» Connectivity in western Atlantic seep populations: Oceanographic and life-history processes underlying genetic structure (SEEPC)
ContributorsAffiliationRole
Young, Craig M.University of Oregon (OIMB)Principal Investigator
Maslakova, Svetlana A.University of Oregon (OIMB)Co-Principal Investigator
Copley, NancyWoods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager


Dataset Description

Environmental and equipment data collected by the MOCNESS during deployments near methane seep sites on the Barbados Acretionary Prism, 2012 and in the northern Gulf of Mexico, 2014, from .PRO files.


Methods & Sampling

One-meter MOCNESSS nets fitted with 300 um mesh nets were towed obliquely over methane seep sites, closing and opening nets at intervals that varied with the depth. Not all environmental sensors were on, so some recorded constant zero values.


Data Processing Description

BCO-DMO Processing:
MOCNESS sensor data are served using a custom perl script. In order to apply the script, the file name and header must be in a prescribed format. BCO-DMO edited the filenames and headers to conform to these requirments. Minor editing was done to clarify dates and sample numbers. Bad records due to the instrument being out of the water at the start and end of the tow were removed.


[ table of contents | back to top ]

Data Files

File
ctd_mocness.csv
(Comma Separated Values (.csv), 13.75 MB)
MD5:4d41e86c30e298d0eb844f43351fbea3
Primary data file for dataset ID 658408

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
cruiseidCruise identification unitless
year_localFour digit year, local time
towTow number
day_localDay of month, local time, 1 - 31
month_localMonth of year, local time 1 - 12
stationstation number, from event log
yrday_localyear day, Julian Calendar local time decimal day
time_localtime of day; local time using 24 hour clock. HHmm.m
pressdepth of sample decibars
temptemperature degrees C.
thetapotential temperature degrees Celsius
salsalinity calculated from conductivity; if salinity exceeds 50 or is less than 0 o/oo, salinity is set to nd.
sigmapotential density at the surface kg/m^3 -1000
fluorfluorescence milligrams/meter^3 ?
angleangle of net frame relative to vertical (0-89 dgrees) degrees
flowconsecutive flow counts
hzvelhorizontal net velocity m/min meters/minute
vtvelvertical net velocity m/min meters/minute
volvolume filtered meters3
ptranlight transmission as percent percent
netsequential MOCNESS net number
latlatitude, North is positive decimal degrees
lonlongitude, East is positive decimal degrees


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
Generic Instrument Name
CTD MOCNESS
Generic Instrument Description
The CTD part of the MOCNESS includes 1) a pressure (depth) sensor which is a thermally isolated titanium strain gauge with a standard range of 0-5000 decibars full scale, 2) A Sea Bird temperature sensor whose frequency output is measured and sent to the surface for logging and conversion to temperature by the software in the MOCNESS computer (The system allows better than 1 milli-degree resolution at 10 Hz sampling rate), and 3) A Sea Bird conductivity sensor whose output frequency is measured and sent to the surface for logging and conversion to conductivity by the software in the computer (The system allows better than 1 micro mho/cm at 10 Hz sampling rate). The data rate depends on the speed of the computer and the quality of the cable. With a good cable, the system can operate at 2400 baud, sampling all variables at 2 times per second. One sample every 4 seconds is the default, although the hardware can operate much faster. (From The MOCNESS Manual)


[ table of contents | back to top ]

Deployments

AT26-15

Website
Platform
R/V Atlantis
Start Date
2014-05-21
End Date
2014-06-14
Description
Start: Depart Gulfport, MS 05/21/2014 End:  Arrive St. Petersburg, FL 06/14/2014 The AT26-15 cruise was conducted as part of the project "Connectivity in western Atlantic seep populations: Oceanographic and life-history processes underlying genetic structure" (SeepC) funded by NSF OCE-1031050. The cruise included coordinated deployments of DSV Alvin and AUV Sentry. Science objectives (from the WHOI Cruise Planning Synopsis): The primary objective of the SeepC Project is to advance our general knowledge of connectivity in the deep sea using taxa found at seeps as model systems. The focus is on species and processes occurring in the Intra-American Sea (including the Caribbean, Gulf of Mexico, and eastern seaboard of the US), with attention to oceanographic circulation, life histories, and genetics. Our efforts include improving the oceanographic model for the IAS near the seabed using current data from moorings at several depths and locations and coupling this model to a Lagrangian larval transport model. We stress the importance of iterative interactions among the science teams to advance our understanding of connectivity in the deep sea through descriptive and hypothesis-driven research. We will develop effective and best methods for hypothesis testing under the constraints of working in a relatively inaccessible environment and will build capacity in understanding connectivity in deep-sea systems.

AT21-02

Website
Platform
R/V Atlantis
Report
Start Date
2012-06-01
End Date
2012-06-17
Description
Cruise information and original data are available from the NSF R2R data catalog. http://www.whoi.edu/cruiseplanning/synopsis.do?id=1942 The primary objective of the SeepC Project is to advance our general knowledge of connectivity in the deep sea using taxa found at seeps as model systems. The focus is on species and processes occurring in the Intra-American Sea (including the Caribbean, Gulf of Mexico, and eastern seaboard of the US), with attention to oceanographic circulation, life histories, and genetics. Science objectives (from the WHOI Cruise Planning Synopsis): Mooring recoveries and sampling at 3 Barbados seep sites (El Pilar, Orenoque A, Orenoque B) plus MOCNESS tows and some mapping (multibeam, CHIRP).  We may add sample sites if we are able to undertake an advance SENTRY survey in the region (pending request). Our aim would be to add new sites separated by as much as 150-200 km max along a depth gradient and along an isobath.  Use of SENTRY would allow us to undertake precision sampling of known sites, 1 to 1.5 days per station at each of 6 to 8 seep stations.  This is part of the Seep Connectivity Project funded by NSF to investigate historical and contemporary linkages among Barbados, Gulf of Mexico, and Blake Ridge seep species. Activities at each site: 1) Sub-bottom profiling to locate seep areas 2) MOCNESS tows for larval sampling 3) Mooring recoveries (current meter, 2 sediment/larval traps per mooring) 4) Intensive sampling of seep fauna for genetic and reproduction studies


[ table of contents | back to top ]

Project Information

Connectivity in western Atlantic seep populations: Oceanographic and life-history processes underlying genetic structure (SEEPC)

Coverage: Western Atlantic, Gulf of Mexico, Intra-American Sea


This project will evaluate connectivity on spatial scales that match those at which vent systems are being studied (3500 km), with a set of nested seeps (within the Barbados system) within which connectivity can be explored at more local spatial scales (30 to 130 km), and with species that span depth (600 m to 3600 m) and geographic ranges (30 km to 3500 km) and that have diverse life-history characteristics.  Five deep-sea seep systems in the Intra- American Sea (IAS) are targeted: Blake Ridge, Florida Escarpment, Alaminos Canyon, Brine Pool, Barbados (El Pilar, Orenoque A, Orenoque B). The primary objective is to advance our general knowledge of connectivity in the deep sea. The focus is on species and processes occurring in the IAS, with attention to oceanographic circulation, life histories, and genetics. Questions that apply in shallow-water systems motivate this study:

1. What phylogeographic breaks occur in the system? It is important to distinguish between phylogeographic history and connectivity. A phylogeographic break with no shared alleles between populations implies a long history of isolation or possibly cryptic speciation.

2. Are populations connected by ongoing migration? This is the fundamental question about connectivity and the scale of genetic variation in marine species with planktonic larvae.

3. What biophysical processes underlie observed connectivities? Biological processes (e.g., larval distributions in the water column, timing of reproduction, and planktonic larval duration) and physical processes of transport and dispersion interact to determine connectivity.

The oceanographic model for the IAS will be improved and coupled to a Lagrangian larval transport model. The field program includes time-series sampling of larvae at seeps with records of current velocities, water column sampling to determine larval distribution potential, shipboard studies of larval biology and behavior, and sampling of benthic target species. Phylogenetic and population genetic tools will be used to explore historical and contemporary gene flow. Iterative interactions among the science teams will advance our understanding of connectivity in the deep sea and to develop effective and best methods for hypothesis testing under the constraints of working in a relatively inaccessible environment. Since their discovery, deep-sea chemosynthetic ecosystems have been novel systems within which to test the generality of paradigms developed for shallow-water species. This study will explore scale-dependent biodiversity and recruitment dynamics in deep-sea seep communities, and will identify key factors underlying population persistence and maintenance of biodiversity in these patchy systems.

Google Earth map showing positions of stations, CTD, XBT, multibeam locations (KMZ file dlownload)



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]