[DEPRECATED] Locations of sediment push cores collected during R/V Atlantis cruise AT37-13 in the Pacific Ocean off Costa Rica from May to June 2017

Website: https://www.bco-dmo.org/dataset/750284

Data Type: Cruise Results

Version: 2

Version Date: 2020-12-16

Project

» Collaborative research: Quantifying the biological, chemical, and physical linkages between chemosynthetic communities and the surrounding deep sea (Costa Rica Seeps)

Contributors	Affiliation	Role
Levin, Lisa A.	University of California-San Diego Scripps (UCSD-SIO)	Principal Investigator, Contact
Rouse, Gregory	University of California-San Diego Scripps (UCSD-SIO)	Co-Principal Investigator
Rauch, Shannon	Woods Hole Oceanographic Institution (WHOI BCO-DMO)	BCO-DMO Data Manager
Soenen, Karen	Woods Hole Oceanographic Institution (WHOI BCO-DMO)	BCO-DMO Data Manager

Abstract

Locations of sediment push cores collected during R/V Atlantis cruise AT37-13 in the Pacific Ocean off Costa Rica from May to June 2017

Table of Contents

- Coverage
- Dataset Description
 - Data Processing Description
- Data Files
- Related Datasets
- Parameters
- <u>Deployments</u>
- Project Information
- Funding

Coverage

Spatial Extent: N:9.1181 E:-84.2147 S:8.8525 W:-84.8413

Temporal Extent: 2017-05-21 - 2018-11-06

Dataset Description

Locations (decimal lat/long) of sediment push cores collected during AT37-13. Samples collected using HOV Alvin. Locations of the AT42-03 cruise are still restricted

Data Processing Description

BCO-DMO processing notes:

replaced spaces with underscores in parameter names.

[table of contents | back to top]

Data Files

File

push_core_sampling_locations.csv(Comma Separated Values (.csv), 4.46 KB)

MD5:83d5fae0d1c574203119b0baa44250f9

Primary data file for dataset ID 750284

[table of contents | back to top]

Related Datasets

Replaced by New Version

Levin, L. A., Rouse, G. (2021) **Sampling locations of hard substrates and push cores collected during R/V Atlantis cruise AT37-13 and AT42-03 in the Pacific Ocean off Costa Rica in 2017 and 2018.** Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2021-02-19 doi:10.26008/1912/bco-dmo.840955.1 [view at BCO-DMO] Relationship Description: Dataset "AT37-13 Push Core Sampling Locations" has been replaced by dataset "Hard Substrates and Push Core Sampling Locations, AT37-13 & AT42-03"

[table of contents | back to top]

Parameters

Parameter	Description	Units
dive_samplenumber	Alvin dive number and push core number	unitless
latitude	Latitude, south is negative	decimal degrees
longitude	Longitude, west is negative	decimal degrees
site	Site name	unitless
sample	Sample type : push core or hard substrate	unitless
cruise	Cruise ID: AT37-13 or AT42-03	unitless

[table of contents | back to top]

Deployments

AT37-13

Website	https://www.bco-dmo.org/deployment/714567	
Platform	R/V Atlantis	
Start Date	2017-05-20	
End Date	2017-06-11	
Description	More cruise information is available from Rolling Deck to Repository (R2R): * https://www.rvdata.us/search/cruise/AT37-13 * https://doi.org/10.7284/907684	

AT37-13 Alvin Dives

Website	https://www.bco-dmo.org/deployment/715760	
Platform	HOV Alvin	
Start Date	2017-05-21	
End Date	2017-06-08	
Description	Collections of seep organisms in sediments and on rocks.	

[table of contents | back to top]

Project Information

Collaborative research: Quantifying the biological, chemical, and physical linkages between chemosynthetic communities and the surrounding deep sea (Costa Rica Seeps)

Coverage: Costa Rica Pacific Margin

NSF abstract:

If life were to disappear from the deep sea, would we notice? We only have a cursory understanding of this vast region and the connectivity among its communities and the rest of the oceans, and yet the ecosystems of the deep sea have been implicated in the larger function of the global marine ecosystems. We now rely on the deep ocean for food, energy, novel drugs and materials, and for its role in the global cycling of carbon, as well as for supporting services such as habitat creation, nutrient replenishment for shallow waters, and the maintenance of biodiversity. Cold seeps, active areas of the seafloor where methane and other chemicals are released, are key features along the continental margins worldwide. To characterize how methane seep communities interact with the surrounding ecosystems and vice versa, we will study methane seeps off the Pacific coast of Costa Rica in 2017 and 2018. It is the sphere of influence around the seep, both along the seafloor and up into the water column, that we seek to better understand. We will map the structure and the chemistry surrounding these habitats using a novel 3-dimensional framework, combining typical transects with vertical characterizations of the water column just above the seafloor. This will include measurements of methane flux into the water column and changes in the overlying carbonate chemistry and oxygen levels that are critical to our understanding of the effect of warming, oxygen loss and ocean acidification in this region. Within this framework, we will collect seep organisms in sediments and on rocks (including all sizes from microbes to large animals), and transplant some of these from within the area of seep influence to the background deep sea, and vice-versa. Together, these studies will help us to measure the size of the seep sphere of influence, and also demonstrate the role of these seeps within the deep sea and the greater, global, marine ecosystem. We will share this information with a group of teachers during a series of workshops in the San Diego area, at an exhibit at the Birch Aguarium, and through the work of an artist who has worked extensively with marine organisms in extreme environments.

Chemosynthetic ecosystems are inextricably linked to the broader world-ocean biome and global biogeochemical cycles in ways that we are just beginning to understand. This research will identify the form, extent, and nature of the physical, chemical, and biological linkages between methane seeps and the surrounding deep-sea ecosystem. The proposed research builds critical understanding of the structural and functional processes that underpin the ecosystem services provided by chemosynthetic ecosystems. We target a critical continental margin, Costa Rica, where methane fates and dynamics loom large and play out in

an setting that reflects many oceanographic stressors. We will use quantitative sampling and manipulative studies within a 3-dimensional oceanographic framework. We will ask what are the shapes of the diversity and density functions for organisms of different size classes and trophic position over the transition from the seep habitat through the ecotone to the background deep sea? Further, we will ask how do depth, dissolved oxygen concentrations, pH and carbonate ion availability, relative rates of fluid flux, and substrate (biogenic, authigenic carbonate, sediments) alter these linkages and interactions with the surrounding deep sea? Evidence for distinct transitional communities and biotic patterns in density and alpha and beta diversity will be quantified and placed in a global biogeographic context. All of these investigations will occur across biological size spectra: for microorganisms (archaea, bacteria, microeukaryotes), the macrofauna, and the megafauna that form biogenic habitats. Our research results will be interpreted in the context of potential effects of global ocean change in the equatorial Pacific to determine how the linkages with the surrounding deep sea will be altered as anthropogenic impacts proceed in the future.

Related publications:

Levin, L.A., V.J. Orphan, G.W. Rouse, W. Ussler, A. E. Rathburn, G. S. Cook, S. Goffredi, E. Perez, A. Waren, B. Grupe, G. Chadwick, B. Strickrott. (2012). A hydrothermal seep on the Costa Rica margin: Middle ground in a continuum of reducing ecosystems. *Proc. Royal Soc. B.* 279: 2580-88 doi: 10.1098/rspb.2012.0205

Sahling, H., Masson, D. G., Ranero, C. R., Hühnerbach, V., Weinrebe, W., Klaucke, I., & Suess, E. (2008). Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. *Geochemistry, Geophysics, Geosystems* 9: doi: 10.1029/2008GC001978

[table of contents | back to top]

Funding

Funding Source	Award
NSF Division of Ocean Sciences (NSF OCE)	OCE-1634172

[table of contents | back to top]