Raw counts of macrofauna identified in sediment samples from the Kermadec Trench in the Southwest Pacific, 4000 to ~10,000m from the RV/ Thomas G. Thompson during cruise TN309 (HADES-K), May 2014.

Website: https://www.bco-dmo.org/dataset/763694
Data Type: Cruise Results
Version: 1
Version Date: 2019-03-18

Project
» Controls on Hadal Megafaunal Community Structure: a Systematic Examination of Pressure, Food Supply, and Topography (HADES)
ContributorsAffiliationRole
Shank, Timothy M.Woods Hole Oceanographic Institution (WHOI)Principal Investigator
Drazen, Jeffrey C.University of Hawaii at Manoa (SOEST)Co-Principal Investigator
Yancey, PaulWhitman CollegeCo-Principal Investigator
Copley, NancyWoods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager

Abstract
This dataset includes raw counts of macrofauna families identified in push core samples taken in the Kermadec Trench in the Southwest Pacific, 4000 to ~10,000m from the RV/ Thomas G. Thompson during cruise TN309 (HADES-K), May 2014.


Coverage

Spatial Extent: N:-31.9307423 E:-177.290253 S:-35.905159 W:-178.961227
Temporal Extent: 2014-05-02 - 2014-05-07

Dataset Description

This dataset includes raw counts of macrofauna families identified in push core samples taken in the Kermadec Trench in the Southwest Pacific, 4000 to ~10,000m from the RV/ Thomas G. Thompson during cruise TN309 (HADES-K), May 2014.


Acquisition Description

Push cores (6.35 cm diameter) of sediment were collected in situ using the manipulator arm of the Hybrid Remotely Operated Vehicle Nereus on the margin of the Kermadec Trench (6013m) and along the main trench axis (7137 to 9177m) at roughly 1000m increments.

The 0-1, 1-2, 2-3, 3-5, 5-10 cm depth horizons were sectioned for all cores.

Macrofauna (>300 microns) were enumerated and identified to major taxonomic groups (16 total) based on the published morphological descriptions of the taxonomic groups.  The data present the total number of individuals in each of these groups in each core.

Attempts were made to obtain 3 replicate cores at each depth horizon (every 1000 meters from 6000m to 10,000m.  For logistical reasons with vehicle performance (and loss at 10,000), all of the replicates were not able to be collected.


Processing Description

BCO-DMO Processing Notes:
- added conventional header with dataset name, PI name, version date
- modified parameter names to conform with BCO-DMO naming conventions
- re-formatted date from m/d/yyyy to yyyy-mm-dd

 


[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
USGS_SampleIDUSGS sample identifier unitless
SampleYearyear of sampling unitless
Stationstation identifier unitless
DateCollectedcollection date unitless
Geartype of collection gear unitless
USGS_CoreIDUSGS core sample identifier unitless
Sitesite name unitless
SampleType1type of sample unitless
Locationlocation code unitless
Fractioncore fraction?? centimeters
SieveSizesieve mesh size microns
CoreDiametercore diameter centimeters
CoreAreacross-sectional area of core centimeters^2
Latitudelatitude; north is postivie degrees
Longitudelongitude; east is postivie degrees
Depthsample depth below sea surface meters
NIWA_idNational Institute for Water and Atmosphere (NIWA) sample identifier unitless
ACROCIRRIDAENumber of Acrocirridae identified in sample individuals
AMPHARETIDAENumber of Ampharetidae identified in sample individuals
CIRRATULIDAENumber of Cirratulidae identified in sample individuals
FLABELLIGERIDAENumber of Flabelligeridae identified in sample individuals
NEPHTYIDAENumber of Nephtyidae identified in sample individuals
OWENIIDAENumber of Oweniidae identified in sample individuals
PARAONIDAENumber of Paraonidae identified in sample individuals
SYLLIDAENumber of Syllidae identified in sample individuals
TEREBELLIDAENumber of Terebellidae identified in sample individuals
Unknown_PolychaeteNumber of Unknown polychaete identified in sample individuals
NaididaeNumber of Naididae identified in sample individuals
EnchytraeidaeNumber of Enchytraeidae identified in sample individuals
BIVALVIANumber of Bivalvia identified in sample individuals
SIPUNCULANumber of Sipuncula identified in sample individuals
Unknown_IndividualsNumber of unidentified individuals in sample individuals


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
Generic Instrument Name
HROV Nereus
Generic Instrument Description
Nereus is an efficient, multi-purpose “hybrid” vehicle that can explore and operate in the crushing pressures of the greatest ocean depths. An unmanned vehicle, Nereus operates in two complementary modes. It can swim freely as an autonomous underwater vehicle (AUV) to survey large areas of the depths, map the seafloor, and give scientists a broad overview. When Nereus locates something interesting, the vehicle’s support team can bring the vehicle back on board the ship and transforms it into a remotely operated vehicle (ROV) tethered to the ship via a micro-thin, fiber-optic cable. Through this tether, Nereus can transmit high-quality, real-time video images and receive commands from skilled pilots on the ship to collect samples or conduct experiments with a manipulator arm. Technical specifications: Weight on land: 2,800 kg Payload capacity: 25 kg Maximum speed: 3 knots Batteries: rechargable lithium ion, 15 kilowatt hours in two pressure housings Thrusters: 2 fore and aft, 2 vertical, 1 lateral (ROV mode) 2 fore and aft, 1 vertical (AUV mode) Lights: variable output LED array, strobes Manipulator arm: Kraft TeleRobotics 7-function hydraulic manipulator Sonar: scanning sonar, forward look and profile, 675 KHz Sensors: magnetometer, CTD (to measure conductivity, temperature, and depth) Nereus supports a variety of science operations: Push coring, measuring heat flow, geotechnical and geochemical sensing, rock sampling and drilling, biological sampling, water sampling, high resolution acoustic bathymetry, and optical still and video imagery. More information is available from the operator site at URL.

Dataset-specific Instrument Name
Leica MZ APO stereo microscopes
Generic Instrument Name
Microscope - Optical
Generic Instrument Description
Instruments that generate enlarged images of samples using the phenomena of reflection and absorption of visible light. Includes conventional and inverted instruments. Also called a "light microscope".

Dataset-specific Instrument Name
Generic Instrument Name
Push Corer
Dataset-specific Description
Push cores were borrowed from the National Deep Submergence Facility to be able to standardize results. The push cores were 6.35cm diameter).
Generic Instrument Description
Capable of being performed in numerous environments, push coring is just as it sounds. Push coring is simply pushing the core barrel (often an aluminum or polycarbonate tube) into the sediment by hand. A push core is useful in that it causes very little disturbance to the more delicate upper layers of a sub-aqueous sediment. Description obtained from: http://web.whoi.edu/coastal-group/about/how-we-work/field-methods/coring/


[ table of contents | back to top ]

Deployments

TN309

Website
Platform
R/V Thomas G. Thompson
Start Date
2014-04-10
End Date
2014-05-20
Description
Original data are available from the NSF R2R data catalog


[ table of contents | back to top ]

Project Information

Controls on Hadal Megafaunal Community Structure: a Systematic Examination of Pressure, Food Supply, and Topography (HADES)


Coverage: Kermadec Trench adjacent to New Zealand: approximately 37 12.75 S and 178 51.43 E to 31 51.29 S and 176 49.07 W


Extracted from the NSF award abstract:

Severe technical challenges associated with the extremes of hydrostatic pressure have prevented major advances in hadal ecological studies, and relegated hadal systems to among the most poorly investigated habitats on Earth. Through this project, Hadal Ecosystems Studies (HADES) program, PIs will determine the composition and distribution of hadal species, the role of hadal pressures (piezolyte concentrations, enzyme function under pressure), food supply (distribution of POC with the abundance and biomass of trench organisms, and metabolic rates/energetic demand), and depth/topography (genetic divergence and spatial connectivity of populations) have on impacting deep-ocean community structure. This project will examine these factors using the world's first full-ocean depth hybrid remotely operated vehicle (HROV) in conjunction with the only full-ocean depth imaging lander (Hadal-Lander). This project will provide the first seafloor data and samples in one of the world's best, yet little known trenches- the Kermadec Trench (SW Pacific Ocean).  Megafaunal community structure and the relationship between POC and benthic bacterial biomass will be examined as a function of depth and location by systematic high-definition imaging and sediment/faunal sampling transects from abyssal to full trench depths both along and perpendicular to the trench axis. Population genetic approaches will provide levels of genetic divergence and evolutionarily independent lineages to assess the role of depth and topography in trenches and their adjacent abyssal plain in promoting the formation of species. Physiological constraints will be investigated by examining in-situ respiration of selected fauna and tissue concentrations of such protein stabilizers as trimethylamine oxide (TMAO), and the structural adaptations of macromolecules. 

Image of NEREUS Deployment Sites. [click on the image to view a larger version]



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]