Series 2A-2: Multiple stressor experiments on T. pseudonana (CCMP1014) – photophysiology

Website: https://www.bco-dmo.org/dataset/829695
Data Type: experimental
Version: 1
Version Date: 2020-11-18

Project
» Collaborative Research: Effects of multiple stressors on Marine Phytoplankton (Stressors on Marine Phytoplankton)
ContributorsAffiliationRole
Passow, UtaUniversity of California-Santa Barbara (UCSB-MSI)Principal Investigator
Laws, EdwardLouisiana State University (LSU-CC&E [formerly SC&E])Co-Principal Investigator
Sweet, JuliaUniversity of California-Santa Barbara (UCSB-MSI)Scientist, Contact
Copley, NancyWoods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager

Abstract
These experiments were designed to test the combined effects of temperatures and light intensity on the growth growth rate (mu) and photophysiology of the diatom Thalassiosira pseudonana CCMP 1014 in a multifactorial design. Experiments were conducted in artificial seawater supplemented with 5% sterilized seawater. Six temperatures (13.5°C, 20°C, 25°C, 29°C, 31°C, and 32.5°C), and eight light intensities (25, 50, 80, 115,190, 300, 400 and 600 µmol photons · m-2 · s-1 ) were tested during the course of these experiments. This dataset contains measurements of photophysiology using the Light curve (LC3) protocol of the Aquapen-C AP-C 100 fluorometer.


Coverage

Temporal Extent: 2018-01-22 - 2018-02-28

Dataset Description

The raw fluorescence data can be found under the Data Files section as an Excel file and as individual .csv files.


Methods & Sampling

Experiments were conducted in the lab at the University of California Santa Barbara.

Experimental setup:

The experiments were designed to test the combined effects of six temperatures, and eight light intensities on growth and photophysiology of the diatom T. pseudonana CCMP1014 in a multifactorial design. Four temperatures were tested: 13.5°C, 20°C, 25°C, 29°C, 31°C and 32.5°C. Within each temperature, eight light levels were tested: 25, 50, 80,115,190, 300, 450 and 600 µmol photons · m-2 · s-1. All lights were set at a 12 h day: 12 h dark cycle. For logistical reasons, experiments were partially conducted in series.

Experiments were conducted in Multicultivator MC-1000 OD units (Photon Systems Instruments, Drasov, Czech Republic). Each unit consists of eight 85 ml test-tubes immersed in a thermostated water bath, each independently illuminated by an array of cool white LEDs set at specific intensity and timing. A 0.2µm filtered ambient air was bubbled through sterile artificial seawater, and the humidified air was supplied to each tube  Each experiment was split into two phases: An acclimation phase spanning 3 days, was used to acclimate cultures to their new environment. Pre-acclimated, exponentially-growing cultures were then inoculated into fresh media and incubated through a 4-day experimental phase during which assessments of growth, photophysiology, and nutrient cycling were carried out daily. All sampling started 6 hours into the daily light cycle to minimize effects of diurnal cycles.

Experiments were conducted with artificial seawater (ASW) prepared using previously described methods (Kester et. al 1967), and enriched with 50mL per liter of UV sterilized natural seawater and nitrate (NO3), phosphate (PO4), silicic acid (Si[OH]4), at levels ensuring that the cultures would remain nutrient-replete over the course of the experiment. Trace metals and vitamins were added as in f/2 (Guillard 1975). he pH of the growth media was measured spectrophometrically using the m-cresol purple method (Dickson 1993), and adjusted using 0.1N HCl or 0.1M NaOH.

Photophysiology

Photophysiology was assessed daily using a handheld Pulse Amplitude Modulated (PAM) fluorometer (AquaPen-C AP-C 100, Photon System Instruments, Czech Republic). A sample was collected from each light treatment for each, 5 hours after the start of the daily light cycle, and placed in the dark for a minimum of 30 minutes prior to measurements. The dark-adapted sample was used to generate light curves that provide measurements of in-vivo chlorophyll autofluorescence (F0), the maximum quantum yield (QYmax or Fv/Fm), and relative photosynthesis rates based on PSII quantum yields at varying light intensities - using the instrument’s LC3 protocol. The LC3 protocol involves measurements of baseline and maximal fluorescence over seven 60-second phases, with each phase representing a light intensity from 10 to 1000 μmol photons m-2 · s-1.  Blue light (455 nm) was used as actinic light in these experiments, and measurements were made at measuring illumination (f-pulse) intensity of 0.03 μmol photons m-2 · s-1, and saturating (F-pulse) illumination of 2100 μmol photons m-2 · s-1, and actinic illumination (A-pulse) controlled by the instrument’s protocol were set at 10, 20, 50, 100, 300, 500,and 1000  μmol photons m-2 · s-1 (for each 60-second phase). 


Data Processing Description

BCO-DMO Processing Notes:
- data submitted in Excel file "BCODMO_Series 2A - 2_photophysiology.xlsx" sheets "13.5C COMPUTED", "20C COMPUTED", "25C COMPUTED",  "29C COMPUTED" and "31C COMPUTED".
- the five tables were concatenated and transformed so rows became columns.
- extracted the table to csv
- added conventional header with dataset name, PI name, version date


[ table of contents | back to top ]

Data Files

File
2A_photophys.csv
(Comma Separated Values (.csv), 27.39 KB)
MD5:e189a72c3e2fdd16048e9276d57b56ea
Primary data file for dataset ID 829695
Raw Fluorescence Data
filename: Passow_Series_2A_2_photophys_RawData.xlsx
(Octet Stream, 96.58 KB)
MD5:69fd61b89419b33511e81d799afcc8f0
Raw data: fluorescence measurements from the LC3 protocol for samples at 13.5C, 20C, 25C, 29C, and 31C and 8 light levels.
Raw Fluorescence Data - parameter descriptions
filename: Passow_Series_2A_2_photophys_param_descriptions_RawData.txt
(Octet Stream, 2.00 KB)
MD5:06c27f76f9a3f685c6c5290c4831c196
Descriptions of rows and columns for fluorescence Raw Data.
Raw Fluorescence Data 13.5C
filename: Passow_Series_2A_2_photophys_13.5C_RawData.csv
(Comma Separated Values (.csv), 15.59 KB)
MD5:efa3a2ef751d82647b386835a642fc3e
Raw data: fluorescence measurements from the LC3 protocol for samples at 13.5C at eight light levels.
Raw Fluorescence Data 20C
filename: Passow_Series_2A_2_photophys_20C_RawData.csv
(Comma Separated Values (.csv), 16.00 KB)
MD5:27e330e0c996999b7a5b8b2a98446554
Raw data: fluorescence measurements from the LC3 protocol for samples at 20C and 8 light levels.
Raw Fluorescence Data 25C
filename: Passow_Series_2A_2_photophys_25C_RawData.csv
(Comma Separated Values (.csv), 15.82 KB)
MD5:db28359ce93d0c688b77064a4b69a244
Raw data: fluorescence measurements from the LC3 protocol for samples at 25C and 8 light levels.
Raw Fluorescence Data 29C
filename: Passow_Series_2A_2_photophys_29C_RawData.csv
(Comma Separated Values (.csv), 16.39 KB)
MD5:6377dce98e7144ea2dda13c4e027b82d
Raw data: fluorescence measurements from the LC3 protocol for samples at 29C and 8 light levels.
Raw Fluorescence Data 31C
filename: Passow_Series_2A_2_photophys_31C_RawData.csv
(Comma Separated Values (.csv), 16.22 KB)
MD5:bf56d8d2d3a3f905ce04e778fce363a4
Raw data: fluorescence measurements from the LC3 protocol for samples at 31C and 8 light levels.

[ table of contents | back to top ]

Related Publications

Dickson, A. G. (1993). The measurement of sea water pH. Marine Chemistry, 44(2-4), 131–142. doi:10.1016/0304-4203(93)90198-w https://doi.org/10.1016/0304-4203(93)90198-W
Methods
Dickson, A. G., & Millero, F. J. (1987). A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A. Oceanographic Research Papers, 34(10), 1733–1743. doi:10.1016/0198-0149(87)90021-5
Methods
Guillard, R. R. L. (1975). Culture of Phytoplankton for Feeding Marine Invertebrates. Culture of Marine Invertebrate Animals, 29–60. doi:10.1007/978-1-4615-8714-9_3
Methods
Kester, D. R., Duedall, I. W., Connors, D. N., & Pytkowicz, R. M. (1967). Preparation of Artificial Seawater 1. Limnology and Oceanography, 12(1), 176–179. doi:10.4319/lo.1967.12.1.0176
Methods
Mehrbach, C., Culberson, C. H., Hawley, J. E., & Pytkowicx, R. M. (1973). Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography, 18(6), 897–907. doi:10.4319/lo.1973.18.6.0897
Methods
Pierrot, D. E. Lewis,and D. W. R. Wallace. 2006. MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee. doi: 10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a.
Methods
Sweet, J. A. (2020). A tale of two drivers: Exploring the response of the marine diatom, Thalassiosira pseudonana to changes in temperature and irradiance (Order No. 28092894). Available from ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global. (2455969153). Sweet, J. A. (2020). A tale of two drivers: exploring the response of the marine diatom, Thalassiosira pseudonana to changes in temperature and irradiance. UC Santa Barbara. ProQuest ID: Sweet_ucsb_0035N_14840. Merritt ID: ark:/13030/m5pw207f. Retrieved from https://escholarship.org/uc/item/28m0d4h6
Results

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
PhaseIndicates whether the sample was collected during the acclimation phase or the experiment phase of the experiment. unitless
TemperatureIndicates the temperature at which the samples were incubated. degrees Celsius
DayIndicates the timepoint (day) of sampling. D0 = day 0; D1 = day 1; etc. unitless
ReplicateIndicates replication within a treatment. "NA" indicates "not applicable" unitless
IrradianceIrradiance level: SOL = sub-optimum light; OL = optimum light; EL = extreme light unitless
Fominimum fluorescence in dark-adapted state. RFU (Relative Fluorscence Units)
Fmthe maximum fluorescence in dark-adapted state; measured during the first saturation flash after dark adaptation RFU (Relative Fluorscence Units)
QY_maxThe maximum Quantum yield. A measure of the Photosystem II efficiency. In a dark-adapted sample this is equivalent to Fv/Fm. In a light-adapted sample it is equivalent to Fv’/Fm’. unitless
Fm_L1The first measurement of the maximum fluorescence following exposure to actinic light at 10 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) RFU (Relative Fluorscence Units)
Fm_L2The second measurement of the maximum fluorescence following exposure to actinic light at 20 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) RFU (Relative Fluorscence Units)
Fm_L3The third measurement of the maximum fluorescence following exposure to actinic light at 50 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) RFU (Relative Fluorscence Units)
Fm_L4The fourth measurement of the maximum fluorescence following exposure to actinic light at 100 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) RFU (Relative Fluorscence Units)
Fm_L5The fifth measurement of the maximum fluorescence following exposure to actinic light at 300 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) RFU (Relative Fluorscence Units)
Fm_L6The sixth measurement of the maximum fluorescence following exposure to actinic light at 500 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) RFU (Relative Fluorscence Units)
Fm_L7The seventh measurement of the maximum fluorescence following exposure to actinic light at 1000 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) RFU (Relative Fluorscence Units)
Ft_L1The first measurement of the maximum fluorescence following exposure to actinic light at 10 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) RFU (Relative Fluorscence Units)
Ft_L2The second measurement of the maximum fluorescence following exposure to actinic light at 20 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) RFU (Relative Fluorscence Units)
Ft_L3The third measurement of the maximum fluorescence following exposure to actinic light at 50 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) RFU (Relative Fluorscence Units)
Ft_L4The fourth measurement of the maximum fluorescence following exposure to actinic light at 100 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) RFU (Relative Fluorscence Units)
Ft_L5The fifth measurement of the maximum fluorescence following exposure to actinic light at 300 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) RFU (Relative Fluorscence Units)
Ft_L6The sixth measurement of the maximum fluorescence following exposure to actinic light at 500 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) RFU (Relative Fluorscence Units)
Ft_L7The seventh measurement of the maximum fluorescence following exposure to actinic light at 1000 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) RFU (Relative Fluorscence Units)
QY_L1The first measurement of the instantenous photosystem II quantum yield following exposure to actinic light at 10 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) unitless
QY_L2The second measurement of the instantenous photosystem II quantum yield following exposure to actinic light at 20 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) unitless
QY_L3The third measurement of the instantenous photosystem II quantum yield following exposure to actinic light at 50 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) unitless
QY_L4The fourth measurement of the instantenous photosystem II quantum yield following exposure to actinic light at 100 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) unitless
QY_L5The fifth measurement of the instantenous photosystem II quantum yield following exposure to actinic light at 300 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) unitless
QY_L6The sixth measurement of the instantenous photosystem II quantum yield following exposure to actinic light at 500 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) unitless
QY_L7The seventh measurement of the instantenous photosystem II quantum yield following exposure to actinic light at 1000 micro-mol photons·m-2·sec-1 for 60 seconds (L1 indicates the first measurement in the "light" phase) unitless


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
Aquapen-C AP-C 100 (Photon Systems Instruments)
Generic Instrument Name
Fluorometer
Dataset-specific Description
Used for assessment of photochemistry.
Generic Instrument Description
A fluorometer or fluorimeter is a device used to measure parameters of fluorescence: its intensity and wavelength distribution of emission spectrum after excitation by a certain spectrum of light. The instrument is designed to measure the amount of stimulated electromagnetic radiation produced by pulses of electromagnetic radiation emitted into a water sample or in situ.

Dataset-specific Instrument Name
Spectrophotometer (Genesys 10SVIS)
Generic Instrument Name
Spectrophotometer
Dataset-specific Description
Used for measurement of pH.
Generic Instrument Description
An instrument used to measure the relative absorption of electromagnetic radiation of different wavelengths in the near infra-red, visible and ultraviolet wavebands by samples.

Dataset-specific Instrument Name
Multicultivator MC-1000 OD (Photon Systems Instruments, Drasov, Czech Republic)
Generic Instrument Name
Cell Cultivator
Dataset-specific Description
Used for incubation of TP1014 cultures.
Generic Instrument Description
An instrument used for the purpose of culturing small cells such as algae or bacteria. May provide temperature and light control and bubbled gas introduction.


[ table of contents | back to top ]

Project Information

Collaborative Research: Effects of multiple stressors on Marine Phytoplankton (Stressors on Marine Phytoplankton)


The overarching goal of this project is to develop a framework for understanding the response of phytoplankton to multiple environmental stresses. Marine phytoplankton, which are tiny algae, produce as much oxygen as terrestrial plants and provide food, directly or indirectly, to all marine animals. Their productivity is thus important both for global elemental cycles of oxygen and carbon, as well as for the productivity of the ocean. Globally the productivity of marine phytoplankton appears to be changing, but while we have some understanding of the response of phytoplankton to shifts in one environmental parameter at a time, like temperature, there is very little knowledge of their response to simultaneous changes in several parameters. Increased atmospheric carbon dioxide concentrations result in both ocean acidification and increased surface water temperatures. The latter in turn leads to greater ocean stratification and associated changes in light exposure and nutrient availability for the plankton. Recently it has become apparent that the response of phytoplankton to simultaneous changes in these growth parameters is not additive. For example, the effect of ocean acidification may be severe at one temperature-light combination and negligible at another. The researchers of this project will carry out experiments that will provide a theoretical understanding of the relevant interactions so that the impact of climate change on marine phytoplankton can be predicted in an informed way. This project will engage high schools students through training of a teacher and the development of a teaching unit. Undergraduate and graduate students will work directly on the research. A cartoon journalist will create a cartoon story on the research results to translate the findings to a broader general public audience.

Each phytoplankton species has the capability to acclimatize to changes in temperature, light, pCO2, and nutrient availability - at least within a finite range. However, the response of phytoplankton to multiple simultaneous stressors is frequently complex, because the effects on physiological responses are interactive. To date, no datasets exist for even a single species that could fully test the assumptions and implications of existing models of phytoplankton acclimation to multiple environmental stressors. The investigators will combine modeling analysis with laboratory experiments to investigate the combined influences of changes in pCO2, temperature, light, and nitrate availability on phytoplankton growth using cultures of open ocean and coastal diatom strains (Thalassiosira pseudonana) and an open ocean cyanobacteria species (Synechococcus sp.). The planned experiments represent ideal case studies of the complex and interactive effects of environmental conditions on organisms, and results will provide the basis for predictive modeling of the response of phytoplankton taxa to multiple environmental stresses.



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]