| Contributors | Affiliation | Role |
|---|---|---|
| Arnosti, Carol | University of North Carolina at Chapel Hill (UNC-Chapel Hill) | Principal Investigator |
| Brown, Sarah Allison | University of North Carolina at Chapel Hill (UNC-Chapel Hill) | Student |
| Giljan, Greta | Max Planck Institute for Marine Microbiology (MPI) | Student |
| Lloyd, Chad | University of North Carolina at Chapel Hill (UNC-Chapel Hill) | Student |
| Ghobrial, Sherif | University of North Carolina at Chapel Hill (UNC-Chapel Hill) | Data Manager |
| Mickle, Audrey | Woods Hole Oceanographic Institution (WHOI BCO-DMO) | BCO-DMO Data Manager |
Water was collected via Niskin bottles mounted on a rosette, equipped with a CTD, or from mesocosm (large volume) incubations.
For mesocosm (large volume) incubation experiments (referred to as “LV” incubations), seawater was transferred to 20 L carboys that were rinsed three times with water from the sampling depth and then filled with seawater from a single Niskin bottle, using silicone tubing that had been acid washed then rinsed with distilled water prior to use. Four carboys were filled at each depth from bottom water, water from the depth at which oxygen showed a minimum, and deep chlorophyll maximum (DCM) water, according to the CTD. Triplicate 20L carboys were amended with ca. 500 mg (exact mass was recorded for each addition) of HMW Thalassiosira; unamended single carboys were used for controls. All mesocosms were incubated in the dark at near in-situ temperatures. Mesocosms were sub-sampled at the start of incubation (0 days), and then after at approximately 3 d, 5 or 7 d, 10 d, 15 d, and 30 d for multiple assays including: bacterial production using 3H-Leucine, dissolved organic carbon (DOC), nutrients, bacterial cell counts, peptidase and glucosidase activity measurements in addition to the potential of the seawater microbial community to hydrolyze six high-molecular-weight polysaccharides (arabinogalactan, chondroitin sulfate, fucoidan, laminarin, pullulan, and xylan). Bacterial cell counts presented here are from unamended incubations
For each depth and mesocosm sample, 20-30 ml of 1% formaldehyde (FA) fixed sample were filtered through a 0.2 µm pore size poly-carbonate filter, applying a maximum vacuum of 200 mbar. Nucleic acids of filtered cells were counterstained with 4',6-diamidino-2-phenylindole (DAPI) and mounted using a Citifluor/VectaShield (4:1) solution. A fully automated epifluorescence microscope (Zeiss AxioImager.Z2 microscope stand, Carl Zeiss Jena, Germany) equipped with a cooled charged-coupled-device (CCD) camera (AxioCam MRm + Colibri LED light source, Carl Zeiss), a light-emitting diode for DAPI (UV-emitting LED, 365 nm) and a HE-62 multi filter module with a triple emission filter (425/50 nm, 527/54 nm, LP 615 nm, including a triple beam splitter of 395/495/610, Carl Zeiss). As described by Bennke et al., 2016, a minimum of 45 fields of view (FOV) per sample were acquired using a 63x magnification oil immersion plan apochromatic objective with a numerical aperture of 1.4 (Carl Zeiss). Cell counting was performed with the image analysis software ACMETOOL (Zeder, M. 2005-2021, Software for Biology, http://www.technobiology.ch and Max Planck Institute for marine microbiology, Bremen). Validation of the automated counts was done by manual cell counting.
Image analysis was performed with ACMETOOL (Zeder, M. 2005-2021, Software for Biology, http://www.technobiology.ch and Max Planck Institute for marine microbiology, Bremen, version 3) and Zen software package (Carl Zeiss).
- Opened "20250811_EN638_cellcount_selfish_BCODMO.csv" in Excel and removed all the replicate measurements, leaving only the sample information
- Removed the duplicate rows in this file to produce a unique list of all sample instances
- Saved file as "unique_sample_only.csv" and imported into the BCO-DMO system
- Imported "20250811_EN638_cellcount_selfish_BCODMO.csv" into the BCO-DMO system
- Duplicated "20250811_EN638_cellcount_selfish_BCODMO.csv" three times and filtered by "variable" creating three duplicates, each containing only one variable
- Joined these filtered datasets to the "unique_sample_only.csv" dataset
- Exported file as "988179_v1_en638_cellcount_selfish.csv"
| Parameter | Description | Units |
| deployment | Cruise ID | unitless |
| station | Station number for cruise (18, 19, or 20) | unitless |
| latitude | Latitude, south is negative | decimal degrees |
| longitude | Longitude, west is negative | decimal degrees |
| ISO_DateTime_UTC | Date and time of sample collection in ISO format, US Eastern Time (UTC-05:00) | unitless |
| cast_number | Cast number (refers to cast of CTD/Niskin bottles on cruise) | unitless |
| depth_name | Water column feature or oceanic zone sampled (Surface, DCM, 300m, or bottom/near bottom) | unitless |
| depth_actual | Actual depth at which water was collected | meters (m) |
| sample_type | Sample from bulk water or Large Volume incubation | unitless |
| unamended_amended | Whether high molecular weight organic matter was added or not; U for unamended | unitless |
| substrate | Polysaccharide used for incubation: ara = arabinogalactan, chn = chondroitin sulfate, fuc = fucoidan, lam = laminarin, pul = pullulan, xyl = xylan, or control (no substrate added) | unitless |
| timepoint_days | Days post amendment when subsample was taken for substrate addition and enzymatic activity measurement | days |
| timepoint_hours | Hours post amendment when subsample was taken for substrate addition and enzymatic activity measurement | hours |
| replicate_1_selfish_percent | Replicate sample 1 of selfish percent. Blank value indicates sample not available for counting or autofluorescence | percent |
| replicate_2_selfish_percent | Replicate sample 2 of selfish percent. Blank value indicates sample not available for counting or autofluorescence | percent |
| replicate_3_selfish_percent | Replicate sample 3 of selfish percent. Blank value indicates sample not available for counting or autofluorescence | percent |
| average_selfish_percent | Average selfish percent of the three replicates. Blank value indicates sample not available for counting or autofluorescence | percent |
| standard_deviation_selfish_percent | Standard deviation of the average selfish percent of the three replicates. Blank value indicates sample not available for counting or autofluorescence | percent |
| replicate_1_substratecells | Replicate sample 1 of number of substrate cells per ml. Blank value indicates sample not available for counting or autofluorescence | Cells/ml |
| replicate_2_substratecells | Replicate sample 2 of number of substrate cells per ml. Blank value indicates sample not available for counting or autofluorescence | Cells/ml |
| replicate_3_substratecells | Replicate sample 3 of number of substrate cells per ml. Blank value indicates sample not available for counting or autofluorescence | Cells/ml |
| average_substratecells | Average number of substrate cells per ml of the three replicates. Blank value indicates sample not available for counting or autofluorescence | Cells/ml |
| standard_deviation_substratecells | Standard deviation of the average number of substrate cells per ml of the three replicates. Blank value indicates sample not available for counting or autofluorescence | Cells/ml |
| replicate_1_cells | Replicate sample 1 of number of cells per ml. Blank value indicates sample not available for counting or autofluorescence | Cells/ml |
| replicate_2_cells | Replicate sample 2 of number of cells per ml. Blank value indicates sample not available for counting or autofluorescence | Cells/ml |
| replicate_3_cells | Replicate sample 3 of number cells per ml. Blank value indicates sample not available for counting or autofluorescence | Cells/ml |
| average_cells | Average number of cells per ml of the three replicates. Blank value indicates sample not available for counting or autofluorescence | Cells/ml |
| standard_deviation_cells | Standard deviation of the average number of cells per ml of the three replicates. Blank value indicates sample not available for counting or autofluorescence | Cells/ml |
| Dataset-specific Instrument Name | Zeiss LSM780 with Airyscan (Carl Zeiss) |
| Generic Instrument Name | Confocal Laser Scanning Microscope |
| Dataset-specific Description | Zeiss LSM780 with Airyscan (Carl Zeiss) using a 405 nm, a 488 nm, and a 561 nm laser with detection windows of 420–480 nm, 500–550 nm, and LP 605 nm, respectively. |
| Generic Instrument Description | A laser scanning confocal microscope is a type of confocal microscope that obtains high-resolution optical images with depth selectivity, in which a laser beam passes through a light source aperture and then is focused by an objective lens into a small (ideally diffraction-limited) focal volume within or on the surface of a specimen.
The confocal microscope uses fluorescence optics. 'Confocal' means that the image is obtained from the focal plane only, any noise resulting from sample thickness being removed optically. 'Laser scanning' means the images are acquired point by point under localized laser excitation rather than full sample illumination, as in conventional widefield microscopy. |
| Dataset-specific Instrument Name | CTD |
| Generic Instrument Name | CTD Sea-Bird SBE 911plus |
| Dataset-specific Description | Water was collected via Niskin bottles mounted on a rosette, equipped with a CTD, or from mesocosm (large volume) incubations. |
| Generic Instrument Description | The Sea-Bird SBE 911 plus is a type of CTD instrument package for continuous measurement of conductivity, temperature and pressure. The SBE 911 plus includes the SBE 9plus Underwater Unit and the SBE 11plus Deck Unit (for real-time readout using conductive wire) for deployment from a vessel. The combination of the SBE 9 plus and SBE 11 plus is called a SBE 911 plus. The SBE 9 plus uses Sea-Bird's standard modular temperature and conductivity sensors (SBE 3 plus and SBE 4). The SBE 9 plus CTD can be configured with up to eight auxiliary sensors to measure other parameters including dissolved oxygen, pH, turbidity, fluorescence, light (PAR), light transmission, etc.). more information from Sea-Bird Electronics |
| Dataset-specific Instrument Name | Zeiss AxioImager.Z2 microscope stand, Carl Zeiss |
| Generic Instrument Name | Fluorescence Microscope |
| Dataset-specific Description | Zeiss AxioImager.Z2 microscope stand, Carl Zeiss - Fully automated epifluorescence microscope |
| Generic Instrument Description | Instruments that generate enlarged images of samples using the phenomena of fluorescence and phosphorescence instead of, or in addition to, reflection and absorption of visible light. Includes conventional and inverted instruments. |
| Dataset-specific Instrument Name | Niskin bottles |
| Generic Instrument Name | Niskin bottle |
| Dataset-specific Description | Water was collected via Niskin bottles mounted on a rosette, equipped with a CTD, or from mesocosm (large volume) incubations. |
| Generic Instrument Description | A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends. The bottles can be attached individually on a hydrowire or deployed in 12, 24, or 36 bottle Rosette systems mounted on a frame and combined with a CTD. Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc. |
| Website | |
| Platform | R/V Endeavor |
| Start Date | 2019-05-15 |
| End Date | 2019-05-30 |
| Description | Underway datasets (and their DOIs) provided by R2R are the following. Click the cruise DOI for more general information
ADCP: 10.7284/134159
Anemometer: 10.7284/134174
Anemometer: 10.7284/134176
CTD: 10.7284/134160
GNSS: 10.7284/134158
GNSS: 10.7284/134167
GNSS: 10.7284/134168
GNSS: 10.7284/134170
Gyrocompass: 10.7284/134161
Gyrocompass: 10.7284/134162
Met Station: 10.7284/134166
Radiometer: 10.7284/134163
Radiometer: 10.7284/134164
Singlebeam Sonar: 10.7284/134172
Speed Log: 10.7284/134169
Time Server: 10.7284/134171
TSG: 10.7284/134165
TSG: 10.7284/134173
Winch: 10.7284/134175 |
NSF Award Abstract:
Marine dissolved organic matter (DOM) is one of the largest actively-cycling reservoirs of organic carbon on the planet, and thus a major component of the global carbon cycle. The high molecular weight (HMW) fraction of DOM is younger in age and more readily consumed by microbes than lower molecular weight (LMW) fractions of DOM, but the reasons for this difference in reactivity between HMW DOM and LMW DOM are unknown. Two factors may account for the greater reactivity of HMW DOM: (i) targeted uptake of HMW DOM by specific bacteria, a process the PI and her collaborators at the Max Planck Institute for Marine Microbiology (MPI) recently identified in surface ocean waters; and (ii) a greater tendency of HMW DOM to aggregate and form gels and particles, which can be colonized by bacteria that are well-equipped to breakdown organic matter. Scientists and students from the University of North Carolina (UNC) - Chapel Hill will collaborate with researchers at the MPI for Marine Microbiology (Bremen, Germany) to investigate this breakdown of HMW DOM by marine microbial communities. These investigations will include a field expedition in the North Atlantic, during which HMW DOM degradation rates and patterns will be compared in different water masses and under differing conditions of organic matter availability. DOM aggregation potential, and degradation rates of these aggregates, will also be assessed. Specialized microscopy will be used in order to pinpoint HMW DOM uptake mechanisms and rates. The work will be complemented by ongoing studies of specific bacteria that breakdown HMW DOM, their genes, and their proteins. Graduate as well as undergraduate students will participate as integral members of the research team in all aspects of the laboratory and field work; aspects of the project will also be integrated into classes the scientist teaches at UNC.
The existence of a size-reactivity continuum of DOM - observations and measurements showing that HMW DOM tends to be younger and more reactive than lower MW DOM - has been demonstrated in laboratory and field investigations in different parts of the ocean. A mechanistic explanation for the greater reactivity of HMW DOM has been lacking, however. This project will investigate the mechanisms and measure rates of HMW DOM degradation, focusing on identifying the actors and determining the factors that contribute to rapid cycling of HMW DOM. Collaborative work at UNC and MPI-Bremen recently identified a new mechanism of HMW substrate uptake common among pelagic marine bacteria: these bacteria rapidly bind, partially hydrolyze, and transport directly across the outer membrane large fragments of HMW substrates that can then be degraded within the periplasmic space, avoiding production of LMW DOM in the external environment. This mode of substrate processing has been termed selfish, since targeted HMW substrate uptake sequesters resources away from other members of microbial communities. Measurements and models thus must account for three modes of substrate utilization in the ocean: selfish, sharing (external hydrolysis, leading to low molecular weight products), and scavenging (uptake of low molecular weight hydrolysis products without production of extracellular enzymes). Using field studies as well as mesocosm experiments, the research team will investigate the circumstances and locations at which different modes of substrate uptake predominate. A second focal point of the project is to determine the aggregation potential and microbial degradation of aggregated HMW DOM. Preliminary studies have demonstrated that particle-associated microbial communities utilize a broader range of enzymatic capabilities than their free-living counterparts. These capabilities equip particle-associated communities to effectively target a broad range of complex substrates. The project will thus focus on two key aspects of HMW DOM - the abilities of specialized bacteria to selectively sequester HMW substrates, as well as the greater potential of HMW substrates to aggregate ? and will quantify these factors at different locations and depths in the ocean. The project will thereby provide a mechanistic underpinning for observations of the DOC size-reactivity continuum, an essential part of developing an overall mechanistic understanding of organic matter degradation in the ocean.
| Funding Source | Award |
|---|---|
| NSF Division of Ocean Sciences (NSF OCE) |