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ABSTRACT 

Accumulating evidence shows that ocean acidification (OA) alters surface ocean chemistry 

and, in turn, affects aspects of phytoplankton biology. However, very little research has 

been done to determine if OA-induced changes to phytoplankton morphology, physiology 

and biochemistry may indirectly affect microzooplankton, the primary consumers of 

phytoplankton. This is one of the first studies to explore how OA may indirectly affect 

microzooplankton ingestion, population growth and gross growth efficiency (GGE). I 

hypothesized 1) that the physiology, biochemistry and morphology of the phytoplankton 

Rhodomonas sp. would be directly affected by elevated pCO2 and 2) that pCO2-induced 

changes in Rhodomonas sp. would affect grazing, growth rates, and GGE in 

microzooplankton consumers. To test my first hypothesis, I cultured the ecologically 

important phytoplankton, Rhodomonas sp., semi-continuously for 17 days under three pCO2 

treatments (400ppmv, 750ppmv and 1000ppmv). During this time I characterized 

Rhodomonas sp. cell size, C:N, cellular total lipids, growth rate, cellular chlorophyll a 

concentrations and carbohydrates. Rhodomonas sp. cell bio-volume and total cellular lipids 

were the only aspects of Rhodomonas sp. found to be significantly affected by pCO2. On 

average, Rhodomonas sp. cell bio-volume increased by ~60% and ~100% and total cellular 

lipids increased by 36% and 50% when cultured under moderate and high pCO2 treatments, 

respectively, compared to the ambient treatment. To test my second hypothesis, the pCO2-

acclimated Rhodomonas sp. were fed to four microzooplankton species, two tintinnid 

ciliates (Favella ehrenbergii (recent name change to Schmidingerella sp.) and Coxliella sp.) 
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and two heterotrophic dinoflagellates (Gyrodinium dominans and Oxyrrhis marina). Two 

experimental designs were used to test whether microzooplankton grazing and growth are 

affected by OA through changes in prey state. My data confirm my hypothesis that 

microzooplankton grazing is affected by OA-induced changes to their prey.  In three out of 

the four grazers tested, short term ingestion rates were either higher or non-linear when 

grazers fed on moderate and high pCO2 acclimated Rhodomonas sp., compared to the 

ambient treatment cells. Using multiple linear regression models to test for the factors that 

explain the observed variation in microzooplankton short term ingestion rates across pCO2 

treatments, prey cell bio-volume explained 43, 82 and 88% of the variability in short term 

grazing rates for O. marina, G. dominans and F. ehrenbergii, respectively. In contrast to the 

short term grazing results, I found that during long term grazing experiments, G. dominans 

and Coxliella sp. grazed ambient pCO2 acclimated Rhodomonas sp. significantly faster than 

moderate and high cultured cells. O. marina demonstrated a non-linear feeding response in 

both short and long term grazing experiments, where O. marina ingested moderate pCO2 

acclimated Rhodomonas sp. faster than ambient and high pCO2 acclimated prey. 

Microzooplankton growth rates were higher for all microzooplankton species when feeding 

on Rhodomonas sp. cultured under moderate and high pCO2 compared to ambient pCO2 

diets. G. dominans and Coxliella sp. were the only grazers that demonstrated a difference in 

GGE across treatments, showing increased GGE when feeding on prey cultured under 

elevated pCO2. These findings validate my hypothesis that OA-induced changes in 

Rhodomonas sp. morphology and biochemistry affects microzooplankton grazing and 

growth. If the alteration of phytoplankton morphology and nutritional quality observed in 
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this study is wide spread across phytoplankton taxa under OA, and this, in turn, affects 

microzooplankton grazing and growth dynamics as seen here, it will serve as a mechanism 

to alter future biogeochemical processes in pelagic marine food webs. 
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INTRODUCTION 

Primary production by phytoplankton provides the bulk of the organic carbon that 

fuels marine biogeochemical cycles.  Through photosynthesis, phytoplankton convert 

dissolved CO2 in the surface ocean to organic and inorganic matter, generating ~50% of 

global primary production (Finkel et al. 2009).  Microzooplankton, in particular 

heterotrophic dinoflagellates and ciliates, are the principal consumers of phytoplankton 

(Strom et al. 2001, Sherr and Sherr 2002, Calbet and Landry 2004, Sherr and Sherr 2007).  

Some microzooplankton are capable of growing as fast as or faster than their phytoplankton 

prey, resulting in tight temporal coupling between populations (Kuipers and Witte 1999, 

Strom 2002).  Their high intrinsic growth rate and high biomass-specific ingestion rates 

allow them to consume an average of 60 to 75% of phytoplankton production (Levinsen and 

Nielsen 2002, Calbet and Landry 2004).  

In addition to being the major consumers of marine primary production, 

microzooplankton play a pivotal role in ecosystem functioning as key components of the 

microbial loop (Sherr and Sherr 2002) and serving as an important link for the transfer of 

primary productivity to higher trophic levels such as copepods and larval fish (Calbet and 

Landry 2004, Tillmann 2004, Drira et al. 2010).  Microzooplankton are the dominant 

nutrient remineralizers in the ocean because of their comparatively high biomass specific 

metabolic rates and their low gross growth efficiencies (GGE) (Sherr and Sherr 2002, Calbet 

and Landry 2004).  Microzooplankton recycle ~ 40 to 63% of the nitrogen requirement for 

recycled primary production, in comparison to copepods that contribute only 14% 
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(Buitenhuis et al. 2010).  In addition, sloppy feeding and fecal pellet production by 

microzooplankton substantially contribute to the pools of dissolved (DOM) and particulate 

organic matter (POM), important components of biogeochemical cycling.  In grazing 

experiments Strom et al. (1997) found that microzooplankton released 16-37% of ingested 

algal carbon as DOM in comparison to phytoplankton that released 3 to 7% of cell organic 

carbon per day as DOM.  Finally, microzooplankton’s size, biochemical composition and 

swimming behavior can make them the preferred food for mesozooplankton (Calbet 2008).  

Given microzooplankton’s role as the ocean’s dominant grazer, and the 

biogeochemical implications of this, considerable research has been done over the last few 

decades to elucidate microzooplankton grazing dynamics (e.g. Landry and Hassett 1982, 

Verity 1985, Strom 2002, Caron and Hutchins 2012).  An important finding from this body of 

research was that microzooplankton, seemingly simple, single-celled protists, are not 

indiscriminate grazers, but instead are capable and active in selecting which prey to 

consume (Verity 1991, Strom 2002, Tillmann 2004) within a community of prey choices.   

Microzooplankton selectivity is shown to depend on certain characteristics of 

phytoplankton biology and physiology including. cell size and biochemical characteristics 

(C:N stoichiometry, total lipids) (e. g. John and Davidson 2001, Tillmann 2004, Strom 2002, 

Caron and Hutchins 2012).   

Phytoplankton morphology is one characteristic that causes microzooplankton to 

feed selectively (Hansen 1994).  A microzooplankton’s feeding mechanism and feeding 

apparatus can constrain it’s ingestion to prey cells within a defined size range (Hansen 1992, 

Hansen 1994, Tillmann 2004), thus making it more efficient at capturing and ingesting prey 



 

3 
 

of an optimal size (Jonsson 1986, Hansen 1992, Hansen 1994, Hansen 1996, Flynn et al. 

1996).  Feeding mechanisms and apparati differ among microzooplankton functional 

groups.  As such, so too does the optimal prey size for different microzooplankton (Hansen 

1994, Tillmann 2004).  A review by Hansen (1994) showed that the optimal predator:prey 

size ratio for ciliates is ~ 8:1 , whereas athecate phagotrophic dinoflagellates are capable of 

ingesting phytoplankton approximately as large or larger than themselves, with ratios 

between 0.15:1 and 5.2:1 (Hansen 1994, Tillmann 2004). 

In addition to phytoplankton morphology, biochemical recognition of prey by 

microzooplankton also induces selective grazing behavior.  Microzooplankton can recognize 

and adjust feeding rates based on C:N stoichiometry, fatty acid content, carbohydrate and 

protein content (e. g. John and Davidson 2001, Urabe et al. 2003, Shannon et al. 2007, 

Wynn Edwards et al. 2014).  For example, ciliates and dinoflagellates demonstrated higher 

ingestion rates on phytoplankton with low C:N and C:P ratios and high fatty acid content 

compared to prey cells with higher C:N and C:P and lower fatty acid content (e.g. John and 

Davidson 2001, Urabe et al. 2003, Shannon et al. 2007, Schoo et al. 2013).  Thus, these 

phytoplankton physiological and biochemical properties are important in contributing to 

the grazing selection of prey by microzooplankton.  

In addition to phytoplankton biochemistry (ie. the nutritional quality) being an 

important driver of microzooplankton grazing behavior, it also, in part, affects 

microzooplankton population growth rates and GGE (Urabe et al. 2003, Elser et al. 2003, 

Anderson et al. 2005, Hantzsche and Boersma 2010).  For example, a significant reduction in 

the microzooplankton growth rates of O. marina (Hantzsche and Boersma 2010) and the 
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cladoceran growth rates of Daphnia sp. (Urabe et al. 2003), have been found when feeding 

on phytoplankton prey with elevated C:N and C:P ratios.  Additionally, certain essential fatty 

acids are also important to the growth and reproductive success of heterotrophs (Kattner et 

al. 2007).  Some fatty acids required for microzooplankton growth must be obtained from 

their diet and cannot be synthesized de novo in microzooplankton (Malzahn et al. 2007, 

Kattner et al. 2007, Leu et al. 2013).  Therefore, it is energetically favorable for 

microzooplankton to be selective, and to choose prey with physiological, biochemical, and 

morphological characteristics that promote high growth rates and GGE. 

 The physiological and biochemical properties that determine the nutritional quality 

of phytoplankton for microzooplankton are governed mostly by bottom-up variables such as 

temperature (Harrison et al. 1990, Fu et al. 2007), irradiance (Renaud et al. 1991, Finkel et 

al. 2006), nutrient speciation and concentration (Harrison et al. 1990, Kilham et al. 1997), 

and surface ocean dissolved inorganic carbon speciation (e.g. Burkhardt and Riebesell 1997, 

Fu et al. 2007, Hutchins et al. 2007, Juneja et al. 2013).  An emerging climate variable that 

will alter ocean chemistry and, as accumulating evidence shows, affects the physiology and 

biochemistry of phytoplankton is ocean acidification (OA) (Riebesell 2004, Rossoll et al. 

2012, Schoo et al. 2013, Wynn-Edwards et al. 2014).  OA results from the dissolution of 

rising atmospheric carbon dioxide (CO2), which is increasing at geologically unprecedented 

rates, into the surface ocean.  The dissolution of this CO2 into surface ocean waters causes a 

series of CO2 equilibrium reactions.  These reactions result in an increase in carbonic acid 

(H2CO3), bicarbonate (HCO3
-), pCO2 and H+, and a reduction in carbonate (CO3

2-) (Millero 
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2013).  The increase in H+ causes the surface ocean pH to drop, and acidify the surface 

ocean (Millero 2013).  

The extent to which phytoplankton may respond to increasing pCO2 is likely 

dependent on the physiological mechanisms of inorganic carbon uptake and assimilation. 

Phytoplankton represent a phylogenetically diverse group, differing in their photosynthetic 

efficiency and carbon concentrating mechanisms (CCMs) (Giordano et al. 2005).  The dark 

reactions of photosynthesis is catalyzed by the enzyme Ribulose-1,5-bisphosphate 

carboxylase/oxygenase ( Rubisco).  Rubisco has intrinsically low affinity for pCO2, achieving 

half saturation of carbon fixation at pCO2 concentrations well above those present in 

surface sea water today (Badger et al. 1998, Riebesell 2004, Rost 2004).  To overcome 

Rubisco’s low affinity for CO2, CO2 must be either concentrated at the site of fixation, or its 

concentration increased by converting abundant HCO3
2- to CO2 using the enzyme carbonic 

anhydrase.  However, both of these CCMs are costly to phytoplankton (Burkhardt et al. 

2001), and may be affected by OA through the increased pCO2. Phytoplankton species with 

effective CCM’s will likely be less sensitive to increasing pCO2 levels than those with less 

efficient CCM’s (Burkhardt et al. 2001).  There is evidence suggesting some phytoplankton 

species with less efficient CCMs assimilate dissolved inorganic carbon (DIC) more efficiently 

in elevated pCO2 conditions (Hein 1997, Engel et al. 2005, Riebesell et al. 2007).  

Growing evidence shows that OA affects aspects of phytoplankton biology that can, 

in turn, affect microzooplankton grazing behavior.  For example, OA can alter 

phytoplankton cell size and shape.  The calcifying phytoplankton, Emiliania huxleyi 

responded to OA conditions by increasing cell volume (Iglesias-Rodriguez et al. 2008, Wuori 
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2012, Jones et al. 2013, Kendall 2015).  In addition, marine calcifying species E. huxleyi and 

Gephyrocapsa oceanica cultured under OA conditions had malformed coccoliths and 

incomplete coccospheres (Riebesell et al. 2000a).  Tillmann (2004) suggests morphology of a 

prey cell including cell size and shape are the 1st order determinants of prey suitability for 

microzooplankton.  Secondary constituents important to microzooplankton grazing, like 

phytoplankton physiology and biochemistry, are also affected by OA.  For example, 

phytoplankton species cultured in OA conditions increased their rate of carbon uptake 

compared to uptake of N and P, resulting in high cellular C:N and C:P (e.g. Burkhardt and 

Riebesell 1997, Urabe et al. 2003, Riebesell et al. 2007, Schoo et al. 2013).  Depending on 

species, OA also resulted in increasing (Schoo et al. 2013) or decreasing (Riebesell et al. 

2000b, Rossoll et al. 2012) cellular fatty acid and carbohydrate content.  

If the alteration of phytoplankton morphology and nutritional quality is wide-spread 

across phytoplankton taxa under OA, and this, in turn, affects microzooplankton grazing and 

growth dynamics, it will serve as a mechanism to alter future biogeochemical processes in 

pelagic marine food webs.  Ultimately, grazing rate and GGE of microzooplankton 

determine the direction and magnitude of organic carbon flow in marine food webs (Caron 

and Hutchins 2012).  If microzooplankton GGE decreases under OA conditions, this could 

serve to stimulate the microbial loop through increased POM/DOM production, or more 

carbon may be lost from the system by increased microzooplankton respiration.  

Alternatively, if microzooplankton GGE increases under OA this could lead to stronger 

coupling with higher trophic levels.  Thus, OA-induced changes in phytoplankton biology 

that can alter microzooplankton feeding and population growth rates will be controlling 
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factors in how energy and biomass is transferred through the marine food web (Goldman et 

al. 1987, Anderson 2005, Caron and Hutchins 2012, Schoo et al. 2013). 

To investigate how OA affects the trophic interactions between phytoplankton and 

microzooplankton, in this study I first characterized the physiology, morphology and 

biochemistry of an important and ecologically relevant phytoplankton species under 

elevated pCO2.  I then fed these pCO2-acclimated phytoplankton cells to different species of 

microzooplankton to determine the effect that any OA-induced changes to prey had on 

microzooplankton ingestion and growth rates.  The results of this study will help understand 

the response and trophic transfer efficiency of the base of the marine pelagic food web in a 

more acidified ocean.  
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METHODS 
 

Hypotheses and Experimental Approach 

 

To better understand how ocean acidification may affect the marine planktonic food 

webs, I tested two hypotheses:  

 

Hypothesis 1: The physiology, biochemistry and morphology of the phytoplankton 

Rhodomonas sp. will be affected by elevated pCO2. 

 

Hypothesis 2: pCO2 induced changes to the physiology, biochemistry and morphology of 

Rhodomonas sp. will affect grazing and growth rates in microzooplankton consumers.  

 

To test these hypotheses, I first cultured the phytoplankton species Rhodomonas sp. 

semi-continuously under three target pCO2 concentrations, an ambient and two elevated 

concentrations.  Under these treatment conditions I measured a suite of phytoplankton 

physiological and biochemical characteristics (see sections below).  After characterizing the 

Rhodomonas sp. response to OA, pCO2 acclimated Rhodomonas cells were used to test 

whether microzooplankton grazing and growth are affected by OA through OA-induced 

changes to prey state.  Two experimental designs were used to test this hypothesis.  First, 

short term (ST) microzooplankton ingestion rates were estimated by measuring the 

accumulation rate of ingested Rhodomonas sp. cells inside of microzooplankton food 

vacuoles over a short time scale (mins.).  Second, microzooplankton were acclimated to the 
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diet of pCO2 cultured Rhodomonas sp. for 5 days before long term (LT) (24 h) 

microzooplankton ingestion and growth rates were measured and calculated using 

equations from Heinbokel (1978).  From these rates, gross growth efficiency was calculated 

to determine if trophic transfer efficiency will be affected by OA.  

pCO2 Culturing System 

The ocean acidification laboratory at Shannon Point Marine Center works by 

creating atmospheric CO2 gas concentrations that are supplied to cultures contained inside 

near air-tight Plexiglas boxes.  Gas exchange between the atmosphere and culture media 

serves as the mechanism by which media pCO2 chemistry is maintained.  CO2 treatment 

atmospheres were produced by adding reagent grade CO2 to air (previously scrubbed free 

of CO2 with a Pure Gas CAS series CO2 adsorber) using Sierra Smart-Trak 2 mass flow 

controllers.  Once the CO2 atmospheres were created, they were split and sent to several 

locations using a flow-regulated control panel (Fig. 1).  One pathway for the treatment 

gases was to a darkened environmental incubator held at 15° housing 3 20L carboys.  Prior 

to experiments the carboys were filled with autoclaved filtered seawater amended with 

f/50 nutrients.  The f/50 media in the carboys was vigorously bubbled with CO2 treatment 

gasses for at least 48 h and serves as pre-equilibrated pCO2 treatment media.  A second 

pathway for the CO2 treatment atmospheres was a walk in environmental chamber (EC) 

that holds experimental cultures inside the Plexiglas boxes. The EC was held at constant 

temperatures and cultures were supplied with photosynthetically active radiation (PAR) at a 

given intensity and light:dark cycles.  Plexiglas boxes were continuously supplied with CO2 

treatment atmospheres. A LiCor LI820 CO2 sensor monitors concentrations of atmospheric 
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CO2 in the inflow gas, in gas exiting the Plexiglas boxes, and in headspaces of the pre-

equilibrating carboys.  

Carbonate chemistry of the pre-equilibrated pCO2 treatment media and 

experimental cultures was determined by measuring total alkalinity (TA) and total dissolved 

inorganic carbon (DIC).  TA was measured with Gran titration using a Metrohm 888 Titrando 

titrator and approximately 0.1N HCl and NaCl titrant.  For corrections of TA, a certified 

reference material (CRM) Batch 131 (2013) provided by Andrew Dickson (Scripps Institution 

of Oceanography, San Diego, USA) was titrated prior to the titration of samples.  An Apollo 

SciTech DIC analyzer was used for DIC measurements and the CRM Batch 131 (2013) was 

used for calibration of the machine prior to sample measurements.  The program CO2sys 

was used to calculate pCO2 using DIC and TA as parameters (constants: Millero et al.; pH 

scale: seawater scale) (Lewis and Wallace 1998).  

Experimental Organisms and Culture Methods 

 

Phytoplankton 

The unicellular flagellated cryptomonad, Rhodomonas sp. (Strain 755), was chosen 

for this study because it is considered an ecologically important resource (Klaveness 1988).  

Rhodomonas sp. is common, but rarely abundant, in coastal or estuarine marine waters 

(Graham et al. 2009).  In colder and deeper waters, such as the North Sea, Rhodomonas sp. 

can contribute significantly to primary productivity during the winter and early spring 

months (Graham et al. 2009).  They are an important food source for many  

 



 

11 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Diagram of SPMC’s ocean acidification culturing system. See text for details.  
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microzooplankton, including ciliates and dinoflagellates, because they are readily ingested 

and digested, lack toxins, and contain relatively high proportions of two essential, highly 

unsaturated fatty acids (HUFAS) (Graham et al. 2009).  As such, it is an ideal model 

phytoplankton to study the effects of elevated pCO2 on planktonic food web ecology.  

Rhodomonas sp. strain 755 was isolated from Long Island Sound in the North Atlantic.  

Maintenance cultures of Rhodomonas sp. were maintained in batch cultures in autoclaved 

filtered seawater amended with f/50 nutrient levels in the EC.  

Microzooplankton 

The microzooplankton used in this study included two tintinnid ciliates and two 

dinoflagellate species.  The two tintinnid ciliates used were Favella ehrenbergii (SPMC 150). 

(recent name change to Schmidingerella taraikaensis (Agatha & Strüder-Kypke 2012)) and 

Coxliella sp. (SPMC 160).  Both were isolated from northern Puget Sound, Washington, USA. 

The two heterotrophic dinoflagellates used were Gyrodinium dominans, isolated from 

Skagerrak between Denmark and Sweden (Hansen & Daugbjerg 2004), and Oxyrrhis marina 

(SPMC 107), isolated from Puget Sound, Washington, USA.  Stock microzooplankton 

cultures were maintained on prey mixtures, which included Rhodomonas sp., in 0.2 µm 

autoclaved filtered seawater (~30 psu) amended with a dilute trace metal mixture (ciliate 

medium, Gifford 1985).  Stock Rhodomonas sp. was grown in f/2, without added Si.  

Microzooplankton and phytoplankton cultures were maintained at 15 °C under a 14:10 

light:dark cycle.  All culture media was prepared from seawater collected from the Puget 

Sound.  
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Semi-continuous Culturing of Rhodomonas sp. 

During experiments, Rhodomonas sp. was cultured semi-continuously under the 

target pCO2 concentrations of ambient (400ppmv), moderate (750ppmv) and high 

(1000ppmv).  These pCO2 concentrations were chosen because they include the current 

atmospheric CO2 concentration and fall within the range of predicted atmospheric CO2 

concentrations for the end of this century (IPCC 2007).  Maintenance culture of 

Rhodomonas sp. in mid exponential growth was used to inoculate 500 ml of pre-

equilibrated media in three replicate 1L polycarbonate experimental bottles per pCO2 

treatment.  These bottles were subsequently placed in Plexiglas boxes inside the EC.  The EC 

was held at 15°C and experimental bottles were incubated under a 14:10 light: dark cycle at 

~ 66.40 µmol photons sec-1 m-2. After inoculation, Rhodomonas cultures were allowed to 

grow for 4 days to a density of approximately ~50,000 cells ml-1. 

 For semi-continuous culturing, subsamples from Rhodomonas sp. experimental 

bottles were taken daily to determine cell concentrations.  These cell concentrations were 

then used to calculate the required volume to be removed, and replaced with new pre-

equilibrated media to bring cell concentrations of Rhodomonas sp. down to ~25,000 cells 

ml-1.  This density was determined in preliminary experiments to be adequate to maintain 

pCO2 near target treatment concentrations in experimental cultures.  To ensure that target 

pCO2 concentrations were maintained in experimental bottles during the experiments, 

subsamples were taken for TA and DIC from the volume removed from the experimental 

bottles during daily dilutions (dilution volume).  TA samples were taken every other day, 

preserved with HgCl2 and stored at 4°C until analysis. DIC samples were prepared for 
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analysis by filtering experimental water through a 0.2µm nylon syringe filter the morning of 

each experimental day.  DIC samples were stored in air tight vials and kept at 4°C until 

analysis within 60 days.  Semi-continuous experiments lasted for a total of 16 to 17 days, 

during which samples were taken for the analysis of the following Rhodomonas sp. 

parameters: intrinsic growth rate (d-1), cellular chlorophyll a (pg Chl a cell-1), cell biovolume 

(µm3), cellular carbohydrate mass (pg cell-1), cellular carbon and nitrogen (pg cell-1), and 

total cellular lipid mass (pg cell-1) (see table 1).  Four Rhodomonas sp. semi-continuous 

experiments were conducted and Rhodomonas sp. cells from each separate experiment 

served as prey for the different microzooplankton grazing experiments (Table 1). 

Phytoplankton Characterization 

Bio-volume 

Subsamples from each treatment replicate experimental bottle were taken and fixed 

with Lugol’s acid to preserve cells for cell bio-volume analysis.  For analysis, an Olympus 

CH30 compound microscope networked to a CoolsnapCF Photometrics camera was used to 

image individual Rhodomonas sp. cells under 400X magnification.  Using RSI image software 

50 cells were haphazardly selected from each treatment replicate and were photographed 

(150 images per pCO2 treatment).  ImageJ software was used to measure Rhodomonas sp. 

cell length and width. Rhodomonas sp. is described as having a prolate spheroid shape.  

Therefore, cell bio-volume was calculated as: 

𝑉𝑝𝑟𝑜𝑙𝑎𝑡𝑒 = (
4

3
) 𝜋𝑎2𝑏 

  (1) 

 Where a= ½ width and b= ½ length of the Rhodomonas sp. cell.  



 

15 
 

Table 1. Description of each experiment, including microzooplankton species used in short 
term (ST) and long term (LT) grazing experiments  and day the grazing experiment was 
done, Rhodomonas sp. prey physiological and biochemical attributes assessed, and the 
duration (days) of semi-continuous culturing for each experiment.  GR: growth rate (d-1); 
CBIO: cell bio-volume (µm3); CARB: carbohydrate (pg cell-1); POC: particulate organic carbon 
(pg cell-1); PON: particulate organic nitrogen (pg cell-1); TLIPIDS: total lipids (pg cell-1), Chl a: 
cellular chlorophyll a (pg Chl a cell-1).  The subscript by each prey attribute represents the 
number of times each parameter was assessed (n) during the duration of each experiment. 

Expt. 
#  

 
ST Grazing 

 
LT Grazing 

Prey Attributes 
Assessed 

Duration 
(days) 

1 G. dominans and  
F. ehrenbergii  

Day 9 
 

N/A 
 
 

GR10, CBIO10, Chl a1, 
CARB1, POC1, PON1 

 
10 

2 O. marina 
Day 9 

O. marina 
Day 16 

 

GR17, CBIO7, Chl a2, 
CARB2, POC2, PON2 

 
17 

3 Coxliella sp. 
Day 9 

Coxliella sp. 
Day 15 

 

GR17, CBIO9, Chl a2, 
CARB2, POC2, PON2, 

TLIPIDS1 

 
16 

4 N/A G. dominans 
Day 16 

GR16, CBIO10, Chl a2, 
CARB2, POC2, PON2, 

TLIPIDS1 

 
17 
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Cellular C and N content 

Samples for Rhodomonas sp. particulate cellular carbon and nitrogen (pg cell-1) were 

taken by gently vacuum filtering 100 mL from each pCO2 treatment replicate onto 21mm 

muffled GF/F filters.  After filtration, filters were removed and placed in tin boats. Samples 

and controls (media blanks, filter blanks and capsule blanks) were placed in a drying oven 

for 24 h at 50-60 ° C, after which time they were removed and placed in a desiccator until 

analysis.  Tin boats containing the filters and controls were folded into pellets, and then 

combusted using a Micro Cube elemental analyzer interfaced to a PDZ Europa 20-20 isotope 

ratio mass spectrometer at the UC Davis Stable Isotope Facility.  Rhodomonas sp. cellular 

nitrogen and carbon content (pg) were normalized to cell-1 and µm-3. 

Total Cellular Lipid Mass 

Samples for total cellular lipid mass were taken and analyzed using an adaption of 

Bligh and Dyer (1959) and Ryckebosch et al. (2012).  Samples were gently vacuum filtered 

on to muffled GF/F filters. Sample volume varied between 250-300 mL depending on 

experimental volume available.  After filtration filters were wrapped in muffled aluminum 

foil and flash frozen by placing the filters on top of dry ice.  After flash freezing, samples 

were stored at -80 °C until analysis. All glass culture tubes, foil pieces, and Pasteur pipets 

used for laboratory extraction were muffled for a full 8 h prior to analysis.  For extraction, 

filters were transferred from the freezer into a clean tissue grinder containing 1.9 mL of 1:2 

v/v CHCl3:MeOH and 0.125 mL DI water.  Filters were homogenized into the solution and 

then transferred to a clean glass culture tube and vortexed for 1 minute.  Samples were 

then sonicated in a water bath at room temperature for 10 minutes and then centrifuged at 
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2000rpm for 10 minutes to remove particulate matter.  The supernatant was then 

transferred to another glass culture tube and 0.625 mL of CHCl3 and 0.625 ml DI water were 

added and then centrifuged for an additional 10 minutes.  After centrifugation, the samples 

were separated into two phases and the bottom organic phase was carefully collected using 

a Pasteur pipet and transferred to a pre-weighed glass culture tube.  After transfer, the 

samples were evaporated using nitrogen gas.  The weight of the dried samples was used to 

determine total cellular lipid mass.  Data were normalized to cell-1, µm-3, and pg C-1.  

Intrinsic Growth Rate 

Subsamples from semi-continuous cultures of Rhodomonas sp. were taken once 

daily in the morning after dilutions (Table 1).  From this, cell density was measured using a 

Beckman Z2 coulter counter and served as population size at T1.  After 24h of growth, 

samples were taken the following morning were used to determine population size at T2.  

Rhodomonas sp. specific growth rate was then calculated according to the exponential 

growth equation: 

 

                                                                    𝐾 = ln[
𝐶2−𝐶1

𝑇2−𝑇1
]     

                              (2) 

where C2 and C1 are the concentrations of Rhodomonas sp. at times T2 and T1 respectively.  

Chlorophyll a 

Cell suspensions from each treatment replicate bottle on day 10 and the final day of 

each semi-continuous experiment were taken for Chl a analysis (Table 1).  For this, 10 mL 
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was filtered onto glass fiber filters (GF/F).  Filters were immediately folded and placed in 

test tubes containing 6 mL of 90% v/v acetone and stored at -20 °C for 24 h.  After 24 h 

samples were warmed to room temperature in the dark, filters were removed and the test 

tubes were centrifuged before fluorometrically analyzed using a Turner Designs Trilogy 

fluorometer.  Raw fluorescence pre- and post-addition of 10% HCl was used to calculate Chl 

a according to the acidification method of Parsons (1984).  Rhodomonas sp. Chl a content 

(pg) was normalized to cell -1 and µm-3. 

Cellular Carbohydrate Content 

Samples for analysis of cellular carbohydrate mass were taken by gravity filtering 30 

mL of experimental culture through 2.5 cm muffled GF/F filters.  Filters were folded and 

wrapped in muffled aluminum foil and stored at -80°C until analysis.  Upon analysis, the 

filters were first extracted in 1.0 mL of 95% H2SO4  and 1.0 mL of nanopure water in a 

sonication bath for 30 minutes, and then for 20 h at room temperature.  After extraction 

samples were centrifuged at 10,000 rpm for 6 minutes.  Of the pooled extract 1.6 mL was 

transferred to fresh test tubes.  Concentrated H2SO4 (4 mL) and 10% phenol (0.8 mL) were 

introduced quickly to each vial of 1.6 mL sample and allowed to react for 30 minutes at 

room temperature.  Samples were analyzed colormetrically using a Spec20D+ 

spectrophotometer at 485nm. S tandards of known dextrose concentrations (1, 2, 4, and 8 

mg L-1) were used to calculate cellular carbohydrate mass.  Carbohydrate content in the 

sample was scaled to total extract volume and cellular carbohydrate content (pg cell-1) was 

found using calculated cell densities.  Carbohydrate mass was further normalized to 

Rhodomonas sp. biovolume (µm3) and carbon (pg C cell-1). 
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Microzooplankton Ingestion and Growth Rates 

 

Measuring Ingestion Rates of Microzooplankton Using Epifluorescence Microscopy 

In order to calculate ST microzooplankton ingestion rates I used a method that 

differentiates between the autofluorescing signatures of microzooplankton and their 

ingested prey.  Autotrophic phytoplankton cells fluoresce red or orange under blue light 

excitation, whereas microzooplankton grazers fluoresce semi-transparent green.  Both can 

be easily visualized under epifluorescence microscopy (Strom et al. 2007), and individuals 

can be easily differentiated by DAPI-induced (4’, 6-diamidino-2-phenylindole) blue 

fluorescence of individual nuclei.  Because microzooplankton cells are semi-transparent, the 

red auotofluorescing phytoplankton cells can easily be visualized and counted inside 

microzooplankton food vacuoles.  

To accurately count the small individual phytoplankton cells within the 

microzooplankton food vacuoles, samples were analyzed under high magnification (400X).  

When quantifying the number of phytoplankton cells within microzooplankton food 

vacuoles using this method it is first necessary to reduce background fluorescence within 

microzooplankton food vacuoles originating from their maintenance food.  Without doing 

so it is difficult to impossible to discern individual prey cells of interest.  To achieve this, 

grazers are typically removed from their maintenance prey prior to an experiment.  Physical 

separation of grazer from prey is challenging, and the appropriate method for removing 

background food depends on the ratio of microzooplankton to phytoplankton size.  If the 

difference in cell size between the grazer and prey is large, mechanical separation can be 

done using a mesh screen.  If the cell size ratio of the grazer and prey is small, then 
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maintenance food is eliminated by allowing microzooplankton to graze down prey 

concentrations to near zero prior to the start of an experiment.  Once prey is removed, care 

must be taken to ensure starvation of grazers does not elicit a state of feeding dormancy.  

Once grazer food vacuoles are cleared of background fluorescence, grazers are 

typically placed in new media, and treatment prey cells are added.  This point serves as time 

zero of an experiment.  Over the course of min. to hrs., samples from experimental flasks 

are taken at several pre-determined time points.  The chosen time points should show an 

incremental increase in ingested phytoplankton over time, but be short enough to prevent 

microzooplankton food vacuoles from becoming saturated with prey, a situation that makes 

it impossible to identify individual phytoplankton cells or calculate a feeding rate.  The 

selection of these time points is thus specific to each microzooplankton species’ feeding 

rate.  For experiments, the number of phytoplankton cells in the food vacuoles of individual 

microzooplankton are counted at each time point.  Then, the average number of prey cells 

in microzooplankton food vacuoles is plotted against each respective sampling time point.  

Microzooplankton ingestion rate is then determined as the slope of ingested cells regressed 

over time. 

  Microzooplankton Short Term Ingestion Rate Experiment 

ST grazing experiments were done during each semi-continuous Rhodomonas sp. 

characterization experiment (Table 1).  These experiments were done after at least 8 days 

of semi-continuous culturing to ensure Rhodomonas sp. achieved physiological steady-state 

in their respective pCO2 treatments (Wuori 2012, Kendall 2015).  Prior to the experiments, 

maintenance food was removed from the grazers, and the method to achieve this differed 
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depending on the grazer tested.  The ciliates, F. ehrenbergii (150 µm length, Jörgensen 

1924) and Coxliella sp. (85 µm length), which are much larger than Rhodomonas sp. (~8 µm 

in length), were physically separated by gentle reverse filtration through a 20µm mesh 

screen.  This allowed the gentle capture of microzooplankton but allowed Rhodomonas sp. 

to pass through the filter.  After sieving, F. ehrenbergii and Coxliella sp. were re-suspended 

in ciliate medium ~20 h and ~48 h prior to experiments, respectively.  Because these ciliates 

do not attain high density, sieving had the added benefit of concentrating the grazer 

population, decreasing the amount of time needed to search for ciliate cells under 

microscopy during sample analysis.  For the dinoflagellates, which are closer in size (~25 µm 

in length) to Rhodomonas sp., it was not possible to remove background food by sieving.  

Instead, G. dominans and O. marina were allowed to graze down the background food 

present in stock cultures to very low densities.  This was done by placing the cultures under 

low light for 11 and 7 days for G. dominans and O. marina, respectively, prior to 

experiments.  Low light served to inhibit the growth of the phytoplankton prey cells.  

Once microzooplankton were cleared of background fluorescence, 

microzooplankton were dispensed into media pre-equilibrated to the three respective pCO2 

treatments.  To ensure that there were at least 100 replicate microzooplankton cells to 

count on a slide, microzooplankton were inoculated to achieve a density of 20-50 cells ml-1 

(Table 2).  pCO2-acclimated Rhodomonas sp. culture was pooled from each of the three 

pCO2 treatment replicates.  From this, cells were added to the experimental bottles 

containing microzooplankton.  Bio-volume of Rhodomonas sp. cells from each pCO2 

treatment were measured the day prior to short term grazing experiments for each pCO2 
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treatment.  The volume of Rhodomonas sp. culture added to experimental bottles was then 

set to achieve saturating food concentrations of 400 µg C l-1, based on the relationship 

between POC and bio-volume for protist plankton <3,000 µm3 described by Menden-Deuer 

and Lessard (2000).  The resulting prey concentrations were expected to have equal carbon 

content and approximately equal total bio-volume, rather than equal cell numbers.  

However, because Rhodomonas sp. POC density was greater than expected from the 

Menden-Deuer and Lessard (2000) relationship overall densities were 150 to 200% of 

carbon saturating conditions. In addition Rhodomonas sp. POC density varied across each 

pCO2 treatment, resulting in different prey carbon saturating concentrations in each pCO2 

treatment (Table 2).  If Rhodomonas sp. was not the optimal food for the microzooplankton, 

an optimal diet treatment was added to serve as positive controls.  If microzooplankton 

grazing on the optimal diet treatments were positive (i.e. the slope of prey cells ingested 

versus time > 0), grazers were deemed physiologically healthy.  For O. marina and F. 

ehrenbergii, optimal diet prey were Isochrysis galbana and Heterocapsa triquetra, 

respectively.  No optimal diet treatments were used for G. dominans and Coxliella sp. 

because Rhodomonas sp. was their primary maintenance food in stock cultures.  

Grazing sampling time points for each microzooplankton are shown in Table 2. 

Sampling consisted of dispensing 20 mL samples into bottles previously filled with 0.5% 

glutaraldehyde and DAPI.  These samples were stored at 4°C for 12 h to allow enough time 

for DAPI to stain microzooplankton and Rhodomonas sp. nuclei.  Samples for the ciliates 

were filtered onto 20 µm and 10 µm pore size polycarbonate (PC) filters for F. ehrenbergii 

and Coxliella sp., respectively.  Samples for the dinoflagellates were filtered onto 5 µm pore  
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Table 2. Experimental design for short term microzooplankton grazing experiments. T0 
grazer (grazer inoculation density (cells ml-1)); T0 prey (prey inoculation density (cells ml-1)) 
with the equivalent prey (µg C L-1) values below in parentheses; A: ambient; M: moderate, 
H: high pCO2 treatments. Bio-volume of Rhodomonas sp. from each pCO2 treatment was 
measured the day prior to short term grazing experiments and used to determine the prey 
densities to inoculate each pCO2 experimental treatment bottle to achieve saturating food 
concentrations (400 µg C l-1, Menden-Deuer and Lessard 2000).  

 
 
 

Grazer 

Sample 
Time 

Points 
(min) 

 
 
 
T0 Grazer 

 
T0 Prey 

 
A 

 
M 

 
H 

G. 
dominans 

15, 45, 90 40 18,000 
(844) 

16,800 
(774) 

16,500 
(779) 

 
F.  

ehrenbergii 
15, 30, 45 20 18,000 

(844) 
16,800 
(774) 

16,500 
(779) 

 
O. marina 30, 60, 90, 

120 
50 17,400 

(774) 
13,300 
(624) 

13,000 
(618) 

 
Coxliella sp. 15, 30, 45 20 20,600 

(1056) 
14,000 
(755) 

13,000 
(715) 

 
 

 

 

 

 

 

 

 

 



 

24 
 

size PC filters. Filters were slide mounted by placing the filter on a microscope slide, 

immersing it in immersion oil, and then covering it with a microscope cover slip.   

Slides were kept at -20°C until analysis, and all slides were analyzed within 3 months of 

preparation.   

For each sampling time point, the number of Rhodomonas sp. cells in the food 

vacuoles of the first 100 haphazardly encountered microzooplankton was counted.  A value 

of 0 was used to represent microzooplankton with empty food vacuoles.  As described 

above, for each treatment replicate, the average number of prey cells in microzooplankton 

food vacuoles were plotted against each respective sampling time point.  A single 

microzooplankton ingestion rate for each ST ingestion rate experiment was found by fitting 

a linear regression to the number of cells ingested over the entire time elapsed.  The 

percentage of the microzooplankton population found to be feeding was determined as the 

number of microzooplankton found with Rhodomonas sp. cells in the food vacuoles divided 

by the total number of microzooplankton counted.  

Microzooplankton Long-term Ingestion and Growth Rate Experiment 

To determine whether patterns observed in ST ingestion rates were conserved over 

longer time periods, a second set of experiments was conducted.  The design of these 

experiments allowed me to simultaneously measure ingestion rates over longer time 

periods, and the growth rates of microzooplankton as a function of diet pCO2 treatment.  

Prior to measuring microzooplankton ingestion and growth rates, grazers were allowed to 

acclimate for 5 days to the pCO2-acclimated prey diet.  When measuring microzooplankton 

feeding rates in response to changes in food quality, long incubation periods (minimum 24 
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h) are recommended to allow for feeding rates to stabilize  (Jakobsen & Strom 2004, 

Meunier et al. 2011, Calbet et al. 2013).  Therefore, the purpose of the acclimation period 

was to ensure microzooplankton achieved physiological steady-state to any OA-induced 

changes in the prey biology.  pCO2 chemistry and prey concentration were maintained 

during the acclimation period by refreshing the microzooplankton and Rhodomonas sp. 

treatment cultures (microzooplankton treatment bottles) with semi-continuous 

Rhodomonas sp. culture or pre-equilibrated media.  

Acclimation period 

The 5 day acclimation period for long term grazing experiments began on day 11 of 

each semi-continuous experiment, following the ST ingestion rate experiments and the 

characterization of Rhodomonas sp. biology (Table 1 and 3).  For acclimation, pCO2-

acclimated Rhodomonas sp. were pooled from semi-continuous treatment replicates and 

used to inoculate five 1 L replicate microzooplankton treatment bottles at prey 

concentrations that achieved saturating food concentrations of 400 µg C l-1, based on the 

relationship between POC and bio-volume for protist plankton <3,000 µm3 described by 

Menden-Deuer and Lessard (2000) as was done in ST grazing experiments (Table 3).  

Microzooplankton were inoculated at varying densities depending on the species (Table 3).  

To control for the influence of microzooplankton nutrient regeneration, ammonium 

chloride (1 µM) was added to the semi-continuous Rhodomonas sp. cultures and the 

microzooplankton treatment bottles.  During the acclimation period, both 

microzooplankton treatment bottles and the semi-continuous Rhodomonas sp. cultures  
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Table 3. Time zero (T0) concentrations (cells mL-1) of microzooplankton and Rhodomonas 
sp., with the equivalent prey (µg C L-1) values below in brackets, at the start of the 
acclimation period and during long term (LT) grazing and growth rate experiments. Bio-
volume of Rhodomonas sp. from each pCO2 treatment was measured the day prior to LT 
grazing experiments and used to determine the prey densities to inoculate each pCO2 
experimental treatment bottle to achieve saturating food concentrations (400 µg C l-1, 
Menden-Deuer and Lessard 2000).  

 
 Acclimation 

T0 grazer 
Acclimation T0 prey LT 

T0 grazer 
LT T0 prey 

Grazer A M H A M H 

O. marina 100 16,500 
(1,071) 

 

13,000 
(823) 

12,600 
(879) 

200 29,000 
(1,882) 

22,300 
(1,412) 

17,200 
(1,201) 

 

Coxliella 
sp. 

60 20,597 
(1,069) 

 

13,947 
(869) 

12,829 
(758) 

15 60,000 
(3,114) 

36,000 
(2,243) 

33,000 
(1,950) 

G. 
dominans 

300 19,500 
(1,207) 

13,000 
(854) 

11,000 
(834) 

640 20,000 
(1,238) 

10,000 
(657) 

8,000 
607) 
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were incubated in their respective atmospheric pCO2 conditions.  In order to keep 

microzooplankton treatment and semi-continuous cultures of Rhodomonas sp. populations 

in steady state over the course of the 5 day acclimation period, it was necessary to adjust 

volumes within bottles daily.  Over a 24 h period, concentrations of microzooplankton and 

Rhodomonas sp. changed due to grazing and growth.  Therefore, daily subsamples from 

microzooplankton treatment bottles and semi-continuous Rhodomonas sp. cultures were 

taken to establish prey cell densities.  Cell densities of Rhodomonas sp. in microzooplankton 

treatment bottles were then used to calculate how much volume needed to be removed 

from microzooplankton treatment bottles and replaced with either pre-equilibrated media 

(f/50 medium without 1µm NH4Cl) (if grazing rates did not exceed Rhodomonas sp. growth 

rates) or culture from the semi-continuous Rhodomonas sp. bottles to bring prey 

concentrations back to the calculated 400 µg C L-1 densities (Menden-Deuer and Lessard 

2000).  After prey densities were adjusted in microzooplankton treatment bottles, 

Rhodomonas sp. densities in the semi-continuous Rhodomonas sp. cultures were diluted 

with respective pre-equilibrated pCO2 media to approximately match prey concentrations in 

the microzooplankton treatment bottles to keep Rhodomonas sp. in steady state.  To 

ensure that target pCO2 concentrations were maintained in microzooplankton treatment 

bottles, subsamples were taken for TA and DIC. 

24h Microzooplankton Ingestion Rate Experiment 

The 24 h (LT) microzooplankton ingestion rate experiment began after the 5 day 

acclimation period.  In preparation for this, subsamples from microzooplankton treatment 

bottles and semi-continuous Rhodomonas sp. cultures were taken to determine cell 
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concentrations of Rhodomonas sp.  Microzooplankton treatment bottles were adjusted to 

bring prey concentrations to 400 µg C L-1 by either adding pre-equilibrated media or culture 

from semi-continuous Rhodomonas bottles as described above.  The semi-continuous 

Rhodomonas sp. cultures were diluted so that Rhodomonas sp. cell densities in these 

bottles were the same as in the microzooplankton treatment bottles and then served as 

control bottles for the 24 h experiment.  Subsamples were then taken from 

microzooplankton treatment and semi-continuous Rhodomonas sp. bottles to determine 

initial (T0) cell concentrations for Rhodomonas sp. and microzooplankton grazers.  The semi-

continuous Rhodomonas sp. cultures and microzooplankton treatment bottles were 

incubated in their respective atmospheric pCO2 conditions for 24 h.  After 24 h, subsamples 

for the same counts were taken again and served as Tf abundances.  Microzooplankton 

grazing, ingestion and clearance rates were calculated according to Heinbokel (1978).  

For Coxliella sp. it was not possible to adjust prey concentrations back to values 

closer to 400 µg C L-1 in grazer bottles prior to the start of the 24 h ingestion rate 

experiment measurement.  As a result, prey carbon concentrations were greater in all pCO2 

treatments in comparison to the other microzooplankton 24 grazing experiments done 

(Table 3).  The ciliate densities were very low in microzooplankton treatment bottles by day 

5 of the acclimation period.  This was a result of Rhodomonas sp. growth rates exceeding 

the ciliate’s ingestion rate in the microzooplankton treatment bottles.  As such, dilution to 

bottles containing Coxliella sp. with pre-equilibrated media was required each day during 

the acclimation period to keep Rhodomonas sp. near 400 µg C L-1.  To avoid diluting Coxliella 

sp. to densities too low to measure ingestion rates during the grazing experiments, 
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microzooplankton treatment and Rhodomonas sp. semi-continuous culture bottles were 

not manipulated, and, consequently densities were not adjusted on the last day of the 

acclimation period.  Therefore, prey concentrations during the LT ingestion rate experiment 

were higher than 400 µg C L-1 for Coxliella sp. in comparison to the other microzooplankton 

(Table 3).  

24 h Microzooplankton Growth Rate 

During the 24 h (LT) ingestion rate experiments, microzooplankton growth rates 

were also measured.  Manual cell counts for microzooplankton were done using microscopy 

and a Sedgewick Rafter Chamber from the subsamples taken from microzooplankton 

treatment bottles at T0 and at Tf that had been fixed with Lugol’s acid.  

Description of Heinbokel (1978) Equations 

The growth constant (k) for Rhodomonas sp. was calculated from the grazer-free semi-

continuous Rhodomonas sp. cultures using: 

 

𝑘 = ln[
𝐶2 − 𝐶1

𝑇2 − 𝑇1
] 

  (3) 

Where C2 and C1 are the concentrations of prey (cells mL-1) at times T2 and T1 respectively.  

Growth rates of the microzooplankton (g) (d-1) in the experimental bottles was calculated 

by: 

 

𝑔 = ln[
𝑀2−𝑀1

𝑇2−𝑇1
)]                              
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                 (4) 

where M2 and M1 are the concentrations of microzooplankton at times T2 and T1 

respectively.   

Microzooplankton grazing rate (G) (day-1) of the microzooplankton was calculated as:  

 

𝐺 = 𝑘 −
(ln (

𝐶2

𝐶1
)

(𝑇2 − 𝑇1)
 

(5) 

Where C2 and C1 are the concentrations of prey within microzooplankton treatment bottles 

at times T2 and T1 respectively.  

Time-averaged Rhodomonas sp. concentration with microzooplankton present (<C>) 

(Rhodomonas sp. cells mL-1) during the time interval T2-T1 was calculated by: 

 

< 𝐶 > = 𝐶1 ∗ [
𝑒(𝑘−𝐺)(𝑇2−𝑇1) − 1

(𝑇2 − 𝑇1)(𝑘 − 𝐺)
] 

           (6) 

Where C1 is the concentration of Rhodomonas sp. in microzooplankton treatment bottles at 

T1.  

Because dinoflagellates and ciliates are capable of growth over 24 h, the average 

microzooplankton concentration (�̅�) (cells mL-1) was calculated as: 

 

�̅� = (
𝑀2 − 𝑀1

(ln(𝑀2) − ln (𝑀1))
) 
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         (7) 

Where M2 and M1 are the concentrations of microzooplankton at times T2 and T1 

respectively.  

Microzooplankton clearance rate (F) (mL microzooplankton-1 day-1) was calculated from: 

 

𝐹 =
𝐺 

�̅�
 

                (8) 

And microzooplankton ingestion rate (I) (Rhodomonas sp. cells microzooplankton-1 day-1) is 

calculated from: 

 

𝐼 = < 𝐶 > ∗ 𝐹 

                (9) 

Microzooplankton Gross Growth Efficiency 

Gross growth efficiency (%) of the different microzooplankton species was 

determined by dividing the amount of C ingested (pg C ingested grazer-1day-1) by the total C 

produced by microzooplankton (pg C production grazer-1day-1).  

Microzooplankton carbon production was calculated by multiplying the increase in 

microzooplankton abundance over 24 h (ΔM, grazer cells ml-1day-1) with then C mass values 

(POCM, pg C grazer cell-1) previously reported for each microzooplankton species used in this 

study (Coxliella sp. (Verity 1985), G. dominans (Nakamura et al. 1995) and O. marina 

(Montagnes et al. 2011)).  
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 Both ST- and LT-term microzooplankton ingestion rates (I, prey cells grazer-1day-1) 

and the Rhodomonas sp. POC cell-1 results (POCR, pg C Rhodomonas sp. cell-1) were used to 

calculate Rhodomonas sp. carbon specific ingestion.  The average microzooplankton 

concentration �̅� (grazer cells ml-1day-1) was used to determine pg Rhodomonas sp. C 

ingested microzooplankton-1 day-1.  

𝐺𝐺𝐸 =  
(∆𝑀 ∗ 𝑃𝑂𝐶𝑀)

(𝐼 ∗ 𝑃𝑂𝐶𝑅 ∗ �̅�)
 

        (10) 

Statistical Methods 

Statistical analyses were done using IBM SPSS Statistics 20 software.  Rhodomonas 

sp. characterization, microzooplankton ingestion and growth rates data were tested with 

analysis of variance (ANOVA).  If a treatment effect was found, a Tukey’s post-hoc 

comparison was performed.  A Levene’s test was used to ensure equal variance across 

treatments.  If this assumption was not met, the data were transformed.  Data that were 

natural log transformed include: Expt. 2 day 10 and Expt. 4 day 16 Rhodomonas sp. cell bio-

volume.  Coxliella sp. GGE values were square root and common log transformed to meet 

homogeneity.  G. dominans GGE values calculated using microzooplankton ST ingestion rate 

values could not be normalized with transformation.  As such, treatment effects were 

tested using the non-parametric Kruskal-Wallis test.  Microzooplankton percent feeding 

data were tested with repeated measures ANOVA (ANOVAR) and significant differences 

were defined as p<0.05 for all statistical analyses.  
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Stepwise multiple linear regression models (MLR) were used to determine what 

predictive biochemical and physiological factors accounted for the pCO2 related variability 

in ingestion of moderate and high pCO2 cultured Rhodomonas sp. by the microzooplankton 

O. marina, F. ehrenbergii and G. dominans. The model included the predictive Rhodomonas 

sp. variables: cell bio-volume, POC cell-1, PON cell-1, Chl a cell-1and carbohydrates cell-1.  The 

model evaluated each variable by using a p value of 0.05 to enter and 0.10 to exit, and 

eliminated variables stepwise if they were not significant predictors of the observed 

increased ingestion rates.  
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RESULTS 

 

pCO2 Chemistry 

Target pCO2 concentrations for ambient, moderate and high treatments were 

400ppm, 750ppm and 1000ppm.  Average pCO2 of pre-equilibrated media for each 

experiment (n=4) was found by averaging the pCO2 treatment replicate values (n=3) that 

were found at the beginning of each experiment from each pCO2 treatment carboy holding 

pre-equilibrated media.  Average pCO2 concentrations of pre-equilibrated media across all 

experiments (n=4) were 379 ± 16, 733 ± 27 and 969 ± 43 (ppmv) for ambient, moderate and 

high, respectively.   

Similarly, average pCO2 of semi-continuous cultures of Rhodomonas sp. was found 

for each experiment by averaging three pCO2 treatment replicate values that were 

calculated for each experimental day, then these daily average values were used to 

calculate a mean across the entire experiment (n= # of days [total measurements per 

treatment]: Expt. 1, n=5[15]; Expt. 2: n=17[51]; Expt. 3: n=16[48]; Expt. 4: n=17[51]) (Table 

4, Figure 2).  Average pCO2 in semi-continuous Rhodomonas sp. culture was slightly lower 

than the pre-equilibrated media due to photosynthetic drawdown by the phytoplankton 

during experiments. The average percent decrease in pCO2 between pre-equilibrated media 

and semi-continuous cultures of Rhodomonas sp. for the 4 experiments were 20.6%, 21.4% 

and 13.9% for ambient, moderate and high, respectively.  

Average daily pCO2 concentrations of experimental cultures of microzooplankton 

and Rhodomonas sp. was found for each LT grazing experiment by averaging the pCO2 
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treatment replicate values (n=5) (that were calculated and included each day of the 5 day 

acclimating feeding period and the 24 h LT grazing experiment).  Then these daily average 

values were used to calculate a mean across the entire experiment (n= # of days [total 

measurements per treatment: LT grazing O. marina, n=7[35]; LT grazing Coxliella sp., 

n=6[30]; LT grazing G. dominans, n=6[30]) (Table 5, Figure 3).  During LT grazing 

experiments, the drawdown by photosynthesis of the phytoplankton was partially 

counteracted by respiration related to the microzooplankton.  The average percent 

decrease in pCO2 between pre-equilibrated media and cultures of mixed phytoplankton and 

microzooplankton for the three LT grazing experiments were ~ 10%, 12% and 8% for 

ambient, moderate and high, respectively.  

Phytoplankton Characterization 

 

Cell Bio-volume 

A significant treatment effect of elevated pCO2 on Rhodomonas sp. cell bio-volume 

was observed on days of ST ingestion rate experiments (Table 6 and 7, Figure 4).  

Rhodomonas sp. prey cells semi-continuously cultured during Expt 1 were used for ST 

ingestion rate experiments with both G. dominans and F. ehrenbergii (Table 1).  For ST 

ingestion rate experiments with G. dominans (Expt. 1), F. eherenbergii (Expt. 1) and Coxliella 

sp. (Expt. 3), I found a significant stepwise increase in Rhodomonas sp. cell bio-volume with 

increasing pCO2 (Tables 6 and 7).  For O. marina ST ingestion rate experiment (Expt. 2), 

Rhodomonas sp. prey cells in high pCO2 were significantly larger than 
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Table 4. Mean of calculated daily average pCO2 concentrations (avg ppmv ± SD) of 
Rhodomonas sp. cultures in treatments ambient (A), moderate (M) and high (H) during 
semi-continuous experiments 1 n=5[15], 2 n=17[51], 3 n=16[48] and 4 n=17[51] (n= # of 
days [total measurements per treatment]. The average percent difference (%) between the 
pre-equilibrated media and semi-continuous Rhodomonas sp. cultures is on the right of 
pCO2 values.  

 
 Media  Expt. 1  %  Expt. 2 % Expt. 3 % Expt. 4 % 

A 379 ± 16 310 ± 20 20.8 311 ± 39 19.7 290 ± 34 26.6 325 ± 33 15.3 
M 733 ± 27 582 ± 16 23.0 579 ± 67 23.5 606 ± 49 19.0 599 ± 52 20.1 
H 969 ± 43 874 ± 21 10.3 849 ± 72 13.2 820 ± 83 16.7 831 ± 83 15.3 
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Table 5. Mean of calculated daily average pCO2 concentrations (avg ppmv ± SD) in 
microzooplankton and Rhodomonas sp. experimental cultures in pCO2 treatments ambient 
(A), moderate (M) and high (H) during the acclimation period (5 days) and long term 
ingestion and growth rate experiments for O. marina n=7[35], Coxliella sp. n=6[30] and G. 
dominans n=6[30] (n= # of days [total measurements per treatment]). The average percent 
difference (%) between the pre-equilibrated media and microzooplankton and Rhodomonas 
sp. cultures is on the right side of all pCO2 values in the table. 

 
  

Media 
Expt. 2 

O. marina 
 
% 

Expt. 3 
Coxliella sp. 

 
% 

Expt. 4 
G. dominans 

 
% 

A 379 ± 16 338 ± 42 11.4 314 ± 47 18.8 377 ± 52 0.5 

M 733 ± 27 670 ± 68 9.0 602 ± 51 19.6 683 ± 98 7.1 

H  969 ± 43 928 ± 58 4.3 843 ± 74 13.9 910 ± 75 6.3 
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Figure 2.Average pCO2 (ppmv) chemistry during semi-continuous culturing of Rhodomonas 
sp. in ambient, moderate and high pCO2 treatments (n=# of days [ total measurements per 
treatment]:Expt. 1 (n=5[15]), Expt. 2 (n=17[51]), Expt. 3 (n=16[48]), Expt. 4 (n=17[51]). The 
solid horizontal line represents the median and the top and bottom of the boxes represent 
the upper and lower quartile (25% of the data is greater or less than this value, 
respectively). The whiskers indicate the 90th and 10th percentiles.  Outlying pCO2 values are 
displayed with an X.  Whiskers are not shown for Expt. 1 boxplot because n<10. 
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Expt. 2: O. marina 

Ambient Moderate High

p
C

O
2

 (
p

p
m

v
)

200

400

600

800

1000

 Expt. 3: Coxliella sp. 

Ambient Moderate High

 p
C

O
2

 (
p
p
m

v
)

200

400

600

800

1000

 
 Expt. 4: G. dominans

Ambient Moderate High

 p
C

O
2
 (

p
p
m

v
)

200

400

600

800

1000

 
Figure 3. Average pCO2 (ppmv) chemistry in experimental cultures of microzooplankton 
feeding on Rhodomonas sp. in ambient, moderate and high pCO2 treatments for days 11-
16/17 of experiments with the microzooplankton O. marina  (n=# of days [ total 
measurements per treatment]: (n=7[35]), G. dominans (n=6[30]) and Coxliella sp. (n=6[30]). 
The solid horizontal line represents the median and the top and bottom of the boxes 
represent the upper and lower quartile (25% of the data is greater or less than this value, 
respectively). Whiskers are not shown in the boxplots because n<10. 
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Table 6. Rhodomonas sp. physiological parameters (avg ±SD, n=3) measured from semi-continuous cultures in pCO2 treatments 
ambient (A), moderate (M) and high (H) on day 10 of semi-continuous culturing during ST grazing experiments G. dominans and F. 
ehrenbergii (Expt. 1), O. marina (Expt. 2), Coxliella sp. (Expt. 3). No ST grazing experiment was done during Expt. 4. The symbol * 
indicates a ln transformation of data was done in order to meet homogeneity assumptions. Bold values indicate a significant pCO2 
treatment effect (ANOVA) and letters (a, b, c) denote treatments that are significantly different from each other (Tukey’s post hoc). 

 
 

Parameter 

Expt. 1 
G. dominans & F. 

ehrenbergii  

 
Expt. 2 

O. marina 

 
Expt. 3 

Coxliella sp. 

 
Expt. 4 

N/A 

 
Biovolume (µm3) 

A  137.31 ± 11.46A    144.58 ± 10.29*A      134.30± 14.15A  154.46 ± 36.70A 

M    170.88 ± 6.82B   211.37 ± 16.77*B      256.92 ± 8.84B  256.41 ± 26.08B 

H    219.42 ± 5.67C    260.58 ± 72.62*B    314.18 ± 12.24C  317.46 ± 27.07B 

 
 
 

POC 

pg C 
cell-1 

A          46.89 ± 2.21         44.53 ± 1.22       51.34 ± 9.80     51.94 ± 2.48 

M    46.07 ± 1.70         46.92 ± 5.10       53.91 ± 3.20     51.65 ± 3.88 

H          47.21 ± 1.46         47.45 ± 2.03       54.97 ± 5.30     56.94 ± 2.91 

pg C 
µm-3 

A             0.34 ± 0.04A        0.27 ± 0.02A            0.39 ± 0.10A        0.35 ± 0.10A 

M        0.27 ± 0.01B        0.19 ± 0.02B            0.21 ± 0.02B        0.20 ± 0.01B 

H        0.22 ± 0.01C        0.16 ± 0.02B         0.18 ± 0.02B        0.18 ± 0.02B 

 
POC:PON 

Elemental ratio 

A       8.58 ± 0.13           5.17 ± 0.30        5.48 ± 0.25     3.36 ± 0.06A 

M             8.77 ± 0.82       5.21 ± 0.42        4.89 ± 0.36      4.34 ± 0.64AB 

H             8.78 ± 0.54           5.16 ± 0.48        5.21 ± 0.09          4.89 ± 0.79B 

 
Growth rate  (d-1) 

A          0.53 ± 0.02AB           0.54 ± 0.03        0.44 ± 0.16    0.54 ± 0.07 
M         0.58 ± 0.02A       0.53 ± 0.05        0.54 ± 0.06    0.53 ± 0.03 
H         0.50 ± 0.02B       0.56 ± 0.10            0.58 ± 0.06    0.53 ± 0.02 

 
 
 
 
 

Chlorophyll a 
 
 

 
pg cell-1 

A             1.30 ± 0.10         0.97 ± 0.04A        1.16 ±  0.11A     0.40 ± 0.12 
M             1.25 ± 0.15            0.73 ± 0.03B         0.92 ± 0.02B     0.51 ± 0.01 
H             1.17 ± 0.30         0.69 ± 0.08B         0.87 ± 0.02B     0.50 ± 0.04 

 
pg µm-3 

A    0.0095 ± 0.0013 0.0060 ± 0.0005A   0.0086 ± 0.0005A 0.0003 ± 0.0010 
M    0.0074 ± 0.0012 0.0035 ± 0.0002B   0.0036 ± 0.0001B 0.0020 ± 0.0001 
H    0.0053 ± 0.0013 0.0027 ± 0.0004C   0.0028 ± 0.0001B 0.0020 ± 0.0003 

pg chl a 
pg C-1 

A  0.028 ± 0.001     0.022 ± 0.001A       0.024 ± 0.009     0.008 ± 0.004 
M  0.027 ± 0.004     0.016 ± 0.001B   0.017 ± 0.001     0.010 ± 0.001 
H  0.025 ± 0.006     0.015 ± 0.002B   0.016 ± 0.002     0.010 ± 0.001 
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Table 6. (continued)      

 
 
 
 
 

Carbohydrates 
 
 

pg 
fructose 

cell-1 

A         2.24 ± 0.71    25.05 ± 10.39          11.96 ± N/A   18.49 ± 3.94 

M              2.17 ± 0.77          24.73 ± 7.61     17.84 ± 9.56   22.51 ± 0.06 

H              2.37 ± 0.42      24.22 ± N/A       9.84 ± 4.70   23.95 ± 2.92 

pg 
fructose 

µm-3 

A          0.017 ± 0.006       0.130 ± 0.060 

M          0.014 ± 0.003      0.090 ± 0.009 

H          0.010 ± 0.001      0.080 ± 0.010 

pg 
fructose 

pg C-1 

A               0.05 ± 0.13          0.36 ± 0.08 

M               0.05 ± 0.11          0.44 ± 0.05 

H           0.05 ± 0.01          0.42 ± 0.04 
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Table 7. Analysis of Variance (ANOVA) and Tukey’s post-hoc test results for Rhodomonas sp. 
physiological parameters which were found to be statistically significant on day 10 of semi-
continuous culturing during ST grazing experiments G. dominans and F. ehrenbergii (Expt. 
1), O. marina (Expt. 2), Coxliella sp. (Expt. 3). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Parameter 

 
 

Expt. 

 
ANOVA 

Tukey’s post-hoc 
p-values 

F value P value A-M A-H M-H 

 
Bio-volume (µm3) 

1 73.686 <0.0001 0.006 <0.0001 0.001 

2 9.295 0.015  0.013  

3 177.218 <0.0001 <0.0001 <0.0001 0.003 

4 22.105 0.002 0.015 0.001  

 
POC (µm-3) 

1 20.231 0.002 0.0250 0.001 0.025 

2 21.835 0.002 0.007 0.002  

3 19.291 0.002 0.007 0.003  

POC:PON elemental ratio 4 5.185 0.049  0.044  

Growth rate (d-1) 1 10.708 0.01   0.009 

Chlorophyll a  

     (pg cell-1) 
2 14.804 0.008 0.016 0.008  

3 6.015 0.037  0.040  

(pg µm -3) 
2 146.424 <0.0001 <0.0001 <0.0001 0.007 

3 47.508 <0.0001 0.001 <0.0001  

(pg chl a pg C-1) 2 16.819 0.006 0.012 0.006  
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moderate and ambient pCO2 treatment prey (Table 7).  Average cell bio-volume across all ST 

grazing experiments was 142.7 ± 9.0, 223.8 ± 42 and 277.9 ± 47 µm3 for ambient, moderate 

and high pCO2, respectively.  On average across all ST experiments, Rhodomonas sp. cells 

were 57 and 95% larger when cultured in moderate and high pCO2 than in ambient pCO2, 

respectively.  While the size of ambient pCO2 Rhodomonas sp. remained similar across 

experiments, the size of the treatment effect for moderate and high pCO2 Rhodomonas sp. 

varied by experiment (Table 6).  

Similarly, a significant treatment effect of elevated pCO2 on Rhodomonas sp. cell bio-

volume was observed on days of LT ingestion rate experiments (Table 8 and 9).  Tukey’s 

Post Hoc comparison revealed cell bio-volume of Rhodomonas sp. prey used for LT grazing 

experiments to be significantly larger in moderate and high pCO2 treatments than ambient, 

except during LT grazing experiment with O. marina (Expt. 2) (Table 9).  For O. marina, a 

significant stepwise increase in Rhodomonas sp. prey cell bio-volume was found with 

increasing pCO2 (Tables 8 and 9).  Average cell bio-volume of Rhodomonas sp. across all LT 

grazing experiments was 145.7 ± 12, 231.4 ± 15 and 289.7 ± 16 (µm3) for ambient, moderate 

and high pCO2, respectively.  On average across LT grazing experiments, Rhodomonas sp. 

cells were 59 and 99% larger in moderate and high pCO2 than in ambient pCO2, respectively. 

Cellular C and N content 

 

Rhodomonas sp. POC and PON were measured on the days after microzooplankton 

grazing experiments (Day 10 and 16 or 17).  In general, Rhodomonas sp. cultured under high 

pCO2 had more particulate organic carbon (POC) cell-1 than Rhodomonas sp. cultured under 
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Table 8. Rhodomonas sp. physiological parameters (avg ±SD, n=3) measured from semi-
continuous cultures in pCO2 treatments ambient (A), moderate (M) and high (H) on the last 
day of semi-continuous culturing during LT grazing experiments O. marina (Expt. 2), Coxliella 
sp. (Expt. 3) and G. dominans (Expt. 4).  Bold values indicate a significant pCO2 treatment 
effect (ANOVA) and letters (a, b, c) denote treatments which are significantly different from 
each other (Tukey’s post hoc test).  

 

 

 
Parameter 

Expt. 2 
O. marina 

Expt. 3 
Coxliella sp. 

Expt. 4 
G. dominans 

 
Biovolume (µm3)  

A  158.56 ± 18.33A    143.3± 8.3A    135.13 ± 5.03*A 

M  215.68 ± 10.73B   234.5 ± 18.6B   244.46 ± 17.37*B 

H  305.32 ± 18.33C   291.7 ± 37.5B   272.74 ± 39.51*B 

 
 
 
POC  
 

 
pg C cell-1 

A     64.92 ± 1.13     51.91 ± 3.85A    61.91 ± 0.56 

M     63.33 ± 4.82     62.27 ± 2.34B    65.66 ± 7.74 

H     69.80 ± 4.22     59.06 ± 0.10B    75.88 ± 2.51 

 
pg C µm-3 

A          0.34  ± 0.20     0.36 ± 0.03A        0.46 ± 0.01A 

M       0.29 ± 0.04     0.27 ± 0.01B        0.27 ± 0.03B 

H       0.23 ± 0.02      0.20 ± 0.01C        0.22 ± 0.09B 

 
POC:PON 
Elemental ratio 

A       7.09 ± 0.79           7.60 ± 0.24     3.24 ±  0.84 
M       6.63 ± 0.48        8.43 ± 1.28         3.59 ±  1.43 
H       5.93 ± 0.41       8.09 ±  2.26         3.18 ±  0.87 

 
Growth rate  (d-1) 

A        0.51 ± 0.04A        0.49 ± 0.01     0.41 ± 0.07 
M        0.64 ± 0.05B        0.69 ± 0.34         0.38  ± 0.24 
H        0.61 ± 0.03B         0.69 ± 0.25     0.43 ± 0.10 

 
 
 
 
 
Chlorophyll a 
 
 

 
pg cell-1 

A        1.38 ± 0.22A    0.55  ± 0.01A     1.21 ± 0.06 
M         1.82 ± 0.24AB    0.72  ± 0.04B     1.20 ± 0.07 
H        2.06 ± 0.12B    0.61  ± 0.03B     1.09 ± 0.10 

 
pg µm-3 

A 0.0090 ± 0.0010 0.0039 ± 0.0001A 0.0090 ± 0.0004A 

M 0.0080 ± 0.0007 0.0031 ± 0.0003B 0.0050 ± 0.0008B 

H 0.0070 ± 0.0004 0.0021 ± 0.0002C 0.0040 ± 0.0006B 

 
pg chl a pg C-1 

A      0.033 ± 0.020     0.012 ± 0.001      0.020 ± 0.002 

M      0.029 ± 0.005     0.012 ± 0.001  0.018 ± 0.003 

H     0.030  ± 0.001     0.010 ± 0.001  0.014 ± 0.003 

 
 
 
 
 
Carbohydrates 
 
 

 
Pg fructose cell-1 

A    51.68 ± 2.24         4.45 ± 3.66  

M     27.83 ± N/A         6.27 ± 4.37 

H     63.50 ± 5.81         9.84 ± 6.13 

 
pg fructose µm-3 

A        0.030 ± 0.026 

M     0.030 ± 0.016 

H     0.030 ± 0.015 

 
pg fructose pg C-1 

A         0.08 ± 0.07 

M         0.10 ± 0.07 

H         0.17 ± 0.10 
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Table 9. Analysis of Variance (ANOVA) and Tukey’s post-hoc statistical test results for 
Rhodomonas sp. physiological parameters which were found to be statistically significant on 
the last day of semi-continuous culturing during LT grazing experiments with O. marina 
(Expt. 2), Coxliella sp. (Expt. 3) and G. dominans (Expt. 4).  

 
 

Parameter 

 
 

Expt. 

 
ANOVA 

Tukey’s post-hoc  
 p-values 

F value P value A-M A-H M-H 

 
Bio-volume µm3 

2 46.978 <0.0001 0.033 <0.0001 0.003 
3 27.694 0.001 0.009 0.001 --------- 
4 47.994 <0.0001 0.001 <0.0001  

 
 

POC  

pg C cell-1 3 11.907 0.008 0.007 0.038  

µm-3 
3 69.953 <0.0001 0.001 <0.0001 0.008 
4 76.263 <0.0001 0.001 <0.0001  

Total lipids pg cell-1 4 8.393 0.018  0.017  

Growth rate d-1 2 9.082 0.015 0.015 0.049  

Chlorophyll a  

pg cell-1 
2 8.912 0.016  0.014  

3 9.113 0.015 0.013   

pg µm -3 
3 52.393 <0.0001 0.009 <0.0001 0.003 

4 48.320 <0.0001 0.001 <0.0001  
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Figure 4. Rhodomonas sp. cell bio-volume (average ±SD, n=3) for pCO2 treatments ambient, 
moderate and high on day 10 of semi-continuous culturing during ST grazing  experiments 
with G. dominans and F. ehrenbergii (Expt. 1), O. marina (Expt. 2) and Coxliella sp. (Expt. 3). 
No ST grazing experiment was done during Expt. 4. Letters next to the data points represent 
treatments that were significantly different within a given experiment (Tukey’s post hoc 
analysis). Refer to Table 6 for data.  
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Figure 5.  Rhodomonas sp. cell bio-volume (average ±SD, n=3) for pCO2 treatments ambient, 
moderate and high on the last day of semi-continuous culturing during LT grazing 
experiments with O. marina (Expt. 2), Coxliella sp. (Expt. 3) and G. dominans (Expt. 4). 
Letters next to the data points represent treatments that were significantly different 
(Tukey’s post hoc analysis). Refer to table 8 for data. 
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ambient and moderate pCO2 (Table 6 and 8, figures 6 and 7). Though this trend was 

consistently present, it was also not significant in most cases, with the exception of prey 

used during the LT grazing experiment with Coxliella sp. (Expt. 3) (Table 9, Figure 7).  In that 

case, moderate and high pCO2 Rhodomonas sp. prey cells had significantly more POC cell-1 

than ambient (Table 9). 

Rhodomonas sp. cellular carbon density (POC µm-3) decreased with increasing pCO2 

(Table 6 and 8, Figures 8 and 9).  The significant increase in cell bio-volume found in 

elevated pCO2 treatments did not coincide with a similar increase in POC cell-1.  As a result, 

there was significantly less POC µm-3 in cells of Rhodomonas sp. in moderate and high pCO2 

treatments compared to ambient pCO2 treatment.  For G. dominans and F. ehrenbergii ST 

grazing experiments (Expt. 1) a stepwise decrease in cellular POC µm-3 occurred in ambient, 

moderate and high pCO2 Rhodomonas sp. prey cells (Table 7).  Similarly, for Coxliella sp. LT 

grazing experiments (Expt. 3) a stepwise decrease in cellular POC µm-3 occurred in ambient, 

moderate and high pCO2 Rhodomonas sp. prey cells (Table 9).  For O. marina (Expt. 2) and 

Coxliella sp. (Expt. 3) ST grazing experiments, moderate and high pCO2 Rhodomonas sp. prey 

cells had significantly less cellular POC µm-3 than ambient (Table 7).  This was also true for G. 

dominans (Expt. 4) LT grazing experiment, moderate and high pCO2 Rhodomonas sp. prey 

cells had significantly less cellular POC µm-3 than ambient (Table 9). 

Rhodomonas sp. POC: PON elemental ratio varied greatly for all pCO2 treatments 

depending on the semi-continuous experiment and day of measurement (Table 6 and 8, 

Figures 10 and 11).  Variability in POC: PON was mainly driven by varying cellular particulate 
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organic nitrogen values of Rhodomonas sp. (Figures 12 and 13).  No consistent trend in POC: 

PON of Rhodomonas sp. was observed with increasing pCO2.  

Total Lipids 

Rhodomonas sp. cellular total lipid content was measured on the days of Coxliella sp. 

(Expt. 3) and G. dominans (Expt. 4) LT grazing experiments.  For the LT grazing experiment  

with the microzooplankton G. dominans (Expt. 4), significantly more cellular total lipids 

were found in high pCO2 Rhodomonas sp. prey cells than ambient pCO2 Rhodomonas sp. 

prey cells (Tables 9 and 10; Figure 14).  This pattern of high pCO2 Rhodomonas sp. having 

more cellular total lipids  was present as well for Rhodomonas sp. prey used in LT grazing 

experiment with Coxliella sp. (Expt. 3), but not significant.  The consistent increase in total 

lipids cell-1 of high and moderate pCO2 Rhodomonas sp. cells scaled with the significant 

increase in cell bio-volume with increasing pCO2 and no significant difference in 

Rhodomonas sp. total lipids density was found across pCO2 treatments (Table 10, Figure 15).  

In addition no significant difference in Rhodomonas sp. cellular total lipids per picogram 

carbon was found with increasing pCO2 (Table 10, Figure 16).  

Growth Rate 

Growth rate of Rhodomonas sp. was measured daily during semi-continuous 

experiments (Table A1, Figures A1, A2, A3 and A4).  In four experiments, average growth 

rates (average ± SD) varied between 0.38 ± 0.24 and 0.69 ± 0.3 (d-1) across all pCO2 

treatments (Table 6 and 8).  For ST grazing experiments with G. dominans and F. ehrenbergii  
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Figure 6. Rhodomonas sp. cellular particulate organic carbon (pg cell-1) (average ± SD, n=3) 
for pCO2 treatments ambient, moderate and high on day 10 of semi-continuous culturing 
during ST grazing  experiments with G. dominans and F. ehrenbergii (Expt. 1), O. marina 
(Expt. 2) and Coxliella sp. (Expt. 3). No ST grazing experiment was done during Expt. 4. Refer 
to Table 6 for data. 
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Figure 7. Rhodomonas sp. cellular particulate organic carbon (pg cell-1) (average ± SD, n=3) 
for pCO2 treatments ambient, moderate and high on the last day of semi-continuous 
culturing during LT grazing experiments with O. marina (Expt. 2), Coxliella sp. (Expt. 3) and 
G. dominans (Expt. 4). Letters next to the data points represent treatments that were 
significantly different (Tukey’s post hoc analysis). Refer to Tables 8 and 9 for data. 
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Figure 8. Rhodomonas sp. cellular particulate organic carbon density (POC µm-3) (average ± 
SD, n=3) for pCO2 treatments ambient, moderate and high on day 10 of semi-continuous 
culturing during ST grazing  experiments with G. dominans and F. ehrenbergii (Expt. 1), O. 
marina (Expt. 2) and Coxliella sp. (Expt. 3). No ST grazing experiment was done during Expt. 
4. Letters next to the data points represent treatments that were significantly different 
(Tukey’s post hoc analysis). Refer to Tables 6 and 7 for data. 
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Figure 9. Rhodomonas sp. cellular particulate organic carbon density (POC µm-3) (average ± 
SD, n=3) for pCO2 treatments ambient, moderate and high on the last day of semi-
continuous culturing during LT grazing experiments with O. marina (Expt. 2), Coxliella sp. 
(Expt. 3) and G. dominans (Expt. 4). Letters next to the data points represent treatments 
that were significantly different (Tukey’s post hoc analysis). Refer to Tables 8 and 9 for data. 
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Figure 10. Rhodomonas sp. cellular particulate organic carbon:particulate organic nitrogen 
(POC:PON) (average ± SD, n=3) for pCO2 treatments ambient, moderate and high on day 10 
of semi-continuous culturing during ST grazing  experiments with G. dominans and F. 
ehrenbergii (Expt. 1), O. marina (Expt. 2) and Coxliella sp. (Expt. 3). No short term grazing 
experiment was done during experiment 4. Letters next to the data points represent 
treatments that were significantly different (Tukey’s post hoc analysis). Refer to Tables 6 
and 7 for data. 

 

 

 

 

 

 

 

 

 

 



 

55 
 

0

2

4

6

8

10

12

Ambient

Moderate

High

Expt. 2
O. marina

Expt. 3
Coxliella sp.

Expt. 4
G. dominans

R
h
o

d
o

m
o
n

a
s
 s

p
. 
P

O
C

: 
P

O
N

 e
le

m
e
n

ta
l 
ra

ti
o
 (

m
o
la

r)

 

Figure 11. Rhodomonas sp. cellular particulate organic carbon:particulate organic nitrogen 
(POC:PON) average ± SD, n=3) for pCO2 treatments ambient, moderate and high on the last 
day of semi-continuous culturing during LT grazing experiments with O. marina (Expt. 2), 
Coxliella sp. (Expt. 3) and G. dominans (Expt. 4). Refer to Tables 8 and 9 for data.  
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Figure 12. Cellular particulate organic nitrogen (pg N cell-1) (average ± SD, n=3) for pCO2 
treatments ambient, moderate and high on day 10 of semi-continuous culturing during ST 
grazing  experiments with G. dominans and F. ehrenbergii (Expt. 1), O. marina (Expt. 2) and 
Coxliella sp. (Expt. 3). No short term grazing experiment was done during experiment 4. 
Refer to Table 6 for data.  
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Figure 13. Cellular particulate organic nitrogen (pg N cell-1) (average ± SD, n=3) for pCO2 
treatments ambient, moderate and high on the last day of semi-continuous culturing during 
LT grazing experiments with O. marina (Expt. 2), Coxliella sp. (Expt. 3) and G. dominans 
(Expt. 4). Refer to Table 8 for data.  
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Table 10. Rhodomonas sp. total lipids (pg cell-1, pg lipids µm-3, pg lipids pg C-1) (avg ±SD, n=3) 
measured from semi-continuous cultures in pCO2 treatments ambient (A), moderate (M) 
and high (H) on the last day of semi-continuous culturing during LT grazing experiments O. 
marina (Expt. 2), Coxliella sp. (Expt. 3) and G. dominans (Expt. 4).  Bold values indicate a 
significant pCO2 treatment effect (ANOVA) and letters (A, B, C) denote treatments which are 
significantly different from each other (Tukey’s post hoc test).  

 

 
Parameter 

Expt. 3 
Coxliella sp. 

Expt. 4 
G. dominans 

 
 
 
 
Total lipids 
 
 

 
pg cell-1 

A     13.9 4 ± 2.86 14.65 ± 1.89*A 

M     19.03 ± 3.25   19.98 ± 1.43*AB 

H     19.90 ± 0.76  22.21 ± 3.26*B 

 
pg µm-3 

A   0.097 ± 0.020 0.095 ± 0.015 

M   0.080 ± 0.007 0.084 ± 0.005 

H   0.069 ± 0.010 0.074 ± 0.010 

 
pg lipids pg C-1 

A     0.27 ± 0.06 0.24 ± 0.03 

M     0.31 ± 0.06 0.31 ± 0.03 

H     0.32 ± 0.02 0.29 ± 0.05 
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Figure 14. Rhodomonas sp. cellular total lipids (pg cell-1) (average ±SD, n=3) for pCO2 
treatments ambient, moderate and high on the last day of semi-continuous culturing during 
LT grazing experiments with Coxliella sp. (Expt. 3) and G. dominans (Expt. 4). Letters next to 
the data points represent treatments that were significantly different (Tukey’s post hoc 
analysis). Refer to Tables 10 and 11 for data. 
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Figure 15. Rhodomonas sp. cellular total lipid density (pg µm-3) (average ±SD, n=3) for pCO2 
treatments ambient, moderate and high on the last day of semi-continuous culturing during 
LT grazing experiments with Coxliella sp. (Expt. 3) and G. dominans (Expt. 4). Refer to Table 
10 for data.  
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Figure 16. Rhodomonas sp. total lipids per cellular POC (pg POC-1) (average ±SD, n=3) for 
pCO2 treatments ambient, moderate and high on the last day of semi-continuous culturing 
during LT grazing experiments with Coxliella sp. (Expt. 3) and G. dominans (Expt. 4). Refer to 
Table 10 for data.  
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(Expt. 1), Rhodomonas sp. growth rate was significantly higher in moderate pCO2 compared 

to high pCO2 (Tables 6 and 7).  For LT grazing experiment with O. marina (Expt. 2) I also 

observed Rhodomonas sp. growth rate to be significantly higher in moderate pCO2 in 

comparison to ambient and high pCO2 treatments (Tables 8 and 9).  Overall, no strong or 

consistent relationship in Rhodomonas sp. growth rate was observed with elevated pCO2.  

Day to day variation in growth rate of Rhodomonas sp. existed (Figures A1, A2, A3 and A4), 

but no distinct patterns of variability were found. 

Chlorophyll a 

Rhodomonas sp. cellular chlorophyll a (Chl a) (pg cell-1) content was measured on 

the day after microzooplankton grazing experiments (Day 10 and 16 or 17).  The effect of 

pCO2 on Rhodomonas sp. cellular Chl a (pg cell-1) was not consistent over time or across 

experiments (Tables 6 and 8, Figures A9 and A10). Chl a (pg cell-1) was greatest in the 

ambient treatment in two instances, in moderate in one instance, high in one instance and 

no significant differences were found three instances.  Specifically, for ST grazing 

experiments with O. marina (Expt. 2) and Coxliella sp. (Expt. 3) there was significantly more 

cellular Chl a (pg cell-1) in ambient pCO2 Rhodomonas sp. cells than moderate and high pCO2 

(Table 7).  No significant pCO2 effect on cellular Chl a (pg cell-1) was found between pCO2 

treatments for Rhodomonas sp. prey used during ST grazing experiments with G. dominans 

and F. ehrenbergii (Expt. 1) (Table 6).  During O. marina  LT grazing experiment (Expt. 2) 

ambient pCO2 Rhodomonas sp. prey had significantly more cellular chl a (pg cell-1) than high 

pCO2  Rhodomonas sp. (Table 9).  For the LT grazing experiment with Coxliella sp. (Expt. 3) 
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moderate pCO2 Rhodomonas sp. prey had significantly more cellular chl a (pg cell-1)  than 

ambient pCO2 Rhodomonas sp. (Table 9).  

Because Chl a per Rhodomonas sp. cell did not scale with increased cell bio-volume 

found in elevated pCO2 treatments, a consistent pattern of lower Chl a density in moderate 

and high pCO2 Rhodomonas sp. cells relative to ambient was found (Table 6 and 8, Figures 

A11, A12).  For the ST grazing experiment with O. marina (Expt. 2), Rhodomonas sp. prey 

cells had significantly lower chl a density with increasing pCO2 treatments (Table 7).  During 

Coxliella sp. ST grazing experiment (Expt. 3), ambient and moderate pCO2 Rhodomonas sp. 

prey cells had significantly more chl a density than high pCO2 Rhodomonas sp. prey cells 

(Expt. 3) (Table 7).  For the LT grazing experiment with Coxliella sp. (Expt. 3), Rhodomonas 

sp. prey cells had significantly lower chl a density with increasing pCO2 treatments (Table 9).  

G. dominans LT grazing experiment (Expt. 4), Rhodomonas sp. prey cells cultured in ambient 

and moderate pCO2 treatments had significantly more chl a density  than high pCO2 (Table 

9). 

Rhodomonas sp. cellular chlorophyll a per picogram carbon did not vary significantly 

between pCO2 treatments, with the exception of one experimental measurement (Table 6 

and 8, Figures A13, A14).  Rhodomonas sp. prey used in ST grazing experiment with O. 

marina (Expt. 2) had significantly more cellular chl a POC-1 in ambient pCO2 than moderate 

and high (Table 7).  

Carbohydrates 

Rhodomonas sp. cellular carbohydrate content was not affected by elevated pCO2 

(Table 6 and 8, Figures A15 and A16).  Results varied greatly between days and experiments. 
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The variability in Rhodomonas sp. carbohydrate values was a result of measurement effects 

such as inconsistent extraction from filters.  No trend or pattern in this variability was 

found. Rhodomonas sp. cellular carbohydrate density (as pg fructose equivalents µm-3) and 

cellular carbohydrate POC-1 was not affected by elevated pCO2 either.  

 

Microzooplankton Grazing 

 

Microzooplankton Short Term Ingestion Rates 

A linear regression was fit to the cells ingested over time elapsed for each treatment 

replicate (n=3) and these slopes were then averaged to find a single short term 

microzooplankton ingestion rate value for each pCO2 treatment (Table 11, appendix B, 

Table B1, Figures B1, B2, B3 and B4).  All time points were included in the regressions 

except for Coxliella sp. and O. marina.  For O. marina, the linear regression was only fit to 

total cells ingested up to 90 minutes because after this time the # of prey cells ingested by 

O. marina no longer followed a linear pattern (Figure B1).  Coxliella sp. fed on Rhodomonas 

sp. in each pCO2 treatment during the first 15 minutes of the short term grazing experiment 

and after this time the number of cells ingested by Coxliella sp. no longer increased linearly 

(Figure B4).  Therefore, the slopes of the lines, total prey cells ingested versus time, 

between time 0 and 15 min were used as ingestion rates to compare between pCO2 

treatments for this microzooplankton.  R2 values of the regressions were >0.90 with only 

two high pCO2 treatment replicates for O. marina being <0.90 (Table B1). 

The microzooplankton ST ingestion rates show cells of Rhodomonas sp. cultured in 

elevated pCO2 conditions were eaten at a faster rate by microzooplankton than 
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Rhodomonas sp. cultured in ambient conditions, with the exception of Coxliella sp.  O. 

marina ingested moderate pCO2 Rhodomonas sp. (1.88  ±  0.05 cells grazer-1 h-1) significantly 

faster than ambient pCO2 Rhodomonas sp. (1.56 ±  0.024 cells grazer-1 h-1) (Table 12; Figure 

17A).  G. dominans ingestion of Rhodomonas sp. increased significantly in a stepwise 

fashion with increasing pCO2 treatments (A: 3.20 ± 0.19; M: 3.50 ± 0.02; H: 4.03 ± 0.06 cells 

grazer-1 h-1) (Table 12; Figure 17B).  F. ehrenbergii ingested Rhodomonas sp. cultured in high 

pCO2 (28.4 ± 0.92 cells grazer-1 h-1) significantly faster than moderate (23.4 ± 1.8 cells grazer-

1 h-1) and ambient (20.8 ± 0.92 cells grazer-1 h-1) (Table 12; Figure 17C).  No pCO2 effect on 

Coxliella sp. ingestion of Rhodmonas sp. was found after 15 minutes of feeding (Table 11; 

Figure 17D). 

Percent Feeding 

During ST ingestion rate experiments, the portion of the microzooplankton 

population feeding was determined at each sample time point (Figure 18).  The two 

dinoflagellates, G. dominans and O. marina, were the only species to have a significant pCO2 

treatment effect on the portion of population feeding during the ST ingestion rate 

experiments (Figure 18A).  A significantly greater percentage of G. dominans fed on 

moderate and high pCO2 Rhodomonas sp. in comparison to ambient pCO2 Rhodomonas sp. 

during the experiment (Table 13).  With time, the difference in percent feeding across 

treatment for G. dominans lessened in all pCO2 treatments (Figure 18A), with ~7, 5 and 2% 

more of the G. dominans population actively feeding in moderate and high pCO2 treatments 

than ambient at the sample time points 15, 45 and 90 minutes, respectively. But no 

significant pCO2*time effect on G. dominans percent feeding was found (Table 13).  For the 
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other dinoflagellate, a significantly greater percentage of O. marina were feeding on the 

moderate and high pCO2 Rhodomonas sp. in comparison to ambient pCO2 Rhodomonas sp. 

during the experiment (Table 13; Fig. 18B).  No significant pCO2*time effect on O. marina 

percent feeding was found (Table 13). 

 In contrast, for the ciliate F. ehrenbergii, the initial percent feeding on Rhodomonas 

sp. was the same between pCO2 treatments, but as time passed more F. ehrenbergii 

appeared to be actively grazing on Rhodomonas sp. in the ambient compared to high 

treatments (Figure 18C).  While there was no significant pCO2 effect found on F. ehrenbergii 

percent population feeding, there was a significant pCO2*time effect on percent F. 

ehrenbergii feeding over the ST ingestion rate experiment (Table 13; Fig. 18C). In general, 

for the other ciliate, Coxliella sp., the percentage of population feeding across all treatments 

was low (<45%) (Figure 18D).  No pCO2 effect was found on the portion of Coxliella sp. 

feeding across pCO2 treatment, but a significant pCO2*time effect was found (Table 13; 

Figure 18D).  Initially, there was a trend towards a greater percentage of Coxliella sp. 

feeding on high pCO2 Rhodomonas sp. than ambient.  But as time passed in the experiment, 

significantly more Coxliella sp. were actively feeding on ambient pCO2 Rhodomonas sp. than 

moderate and high pCO2 Rhodomonas sp. 

Optimal Diet 

 

During ST ingestion rate experiments an additional treatment, optimal diet, was 

added for the microzooplankton F. ehrenbergii and O. marina.  Stock cultures of F. 

ehrenbergii and O. marina required a mixed diet of phytoplankton prey for growth 

maintenance.  In comparison, the other microzooplankton in this study, G. dominans and 



 

67 
 

Coxliella sp., were maintained and grew on a monospecific diet of Rhodomonas sp. prey.  

For F. ehrenbergii and O. marina optimal diet prey were Heterocapsa triquetra and 

Isochrysis galbana, respectively.  This optimal diet treatment was added for F. ehrenbergii 

and O. marina to serve as a positive control, i.e. to assess if grazing responses in pCO2 

treatments were due to the physiological health of the grazer prior to the start of the 

experiment or pCO2 induced treatment effects on the prey.  For both F. ehrenbergii and O. 

marina, ingestion rates on the optimal diet treatments were positive (i.e. the slope of the 

prey cells ingested >0), and so these grazers were deemed physiologically healthy (Figures 

B5 and B7).  For a more detailed description of these data and comparison of 

microzooplankton ingestion of the optimal diet treatment to Rhodomonas sp. cultured in 

pCO2 treatments refer to appendix B. 

Multiple Linear Regression Model 

 Stepwise Multiple Linear Regression Models (MLR) were used to determine if the 

Rhodomonas sp. physiological and biochemical factors examined explained the significant 

variation in microzooplankton ingestion rates. The model included the predictive 

Rhodomonas sp. variables: cell bio-volume, POC cell-1, PON cell-1, Chl a cell-1and 

carbohydrates cell-1. Results of the MLRs and Pearson Correlation Matrices, showed that ST 

ingestion rates of O. marina, G. dominans and F. ehrenbergii could be predicted by and 

were highly correlated to cell biovolume of Rhodomonas sp. in each pCO2 treatment (Table 

14). Rhodomonas sp. cell bio-volume accounted for 43, 82 and 88 % of the variability in O. 

marina, G. dominans, and F. ehrenbergii ST ingestion rates, respectively (Table 14).   
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Table 11. Microzooplankton short term (ST) and long term (LT) ingestion and growth rates when feeding on Rhodomonas sp. 
cultured semi-continuously in ambient (A), moderate (M), and high (H) pCO2. Gross growth efficiency (GGE) was calculated using 
both short and long term ingestion rates. LT grazing experiments were not done with F. ehrenbergii. Bold values indicate 
statistical significance. (ANOVA, α=0.05). The symbol * indicates a natural log transformation of data was done in order to meet 
homogeneity assumptions. The symbol ~ indicates a non-parametric test Kruskal-Wallis was used because data could not be 
transformed to meet assumptions.   

 

 

 

 
Microzooplankton 

 
pCO2 

ST ingestion 
(cells grazer-1 h-1) 

LT ingestion 
(cells grazer-1 d-1) 

Growth rate (day-1) GGE (%) 
ST LT 

 
O. marina 

A   1.56 ± 0.02A          9.23 ± 6.78A             0.56 ± 0.05A  10.9 ± 2.21 36.8 ± 30.1 

M   1.88 ± 0.05B        24.67 ± 5.48B              0.75 ± 0.08AB  12.2 ± 3.05  24.0 ± 9.9 

H     1.73 ± 0.18AB        14.49 ± 1.43A              0.84 ± 0.05B  13.7 ± 1.83  40.3 ± 6.6 

 
G. dominans 

A   3.20 ± 0.19A         9.16 ± 1.70*A               0.33 ± 0.03A   ~3.57 ± 0.86A 33.0 ± 11.3A 
M   3.50 ± 0.02B         5.83 ± 0.55*B 0.66 ± 0.06B ~5.90 ± 1.28B 84.6 ± 12.7B 
H   4.03 ± 0.06C         4.50 ± 0.49*C 0.65 ± 0.02B        ~4.41 ± 0.36A 95.4 ± 9.4B 

Coxliella sp. A          3.34 ± 0.06 1248.36 ± 278.32*A 0.13 ± 0.04A     35.6 ± 14.9A        2.45 ± 1.08A 
M         3.29 ± 0.22   193.14 ± 96.10*B 0.43 ± 0.12B    66.9 ± 32.5AB    33.2 ± 18.0B 
H  3.43 ± 0.23 226.32 ± 194.78*B 0.59 ± 0.07B     87.8 ± 25.5B    56.7 ± 48.6B 

Favella ehrenbergii A    20.8 ± 0.92A  
 M     23.4 ± 1.80AB 

H    28.4 ± 0.92C 
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Table 12. Analysis of Variance (ANOVA) and Tukey’s post-hoc test results for 
Microzooplankton short term (ST), long term (LT), growth rate and gross growth efficiency 
(GGE) which were found to be statistically significant. 
 

 
 
Parameter 

 
 
Microzooplankton 

 
 
Expt. 

 
ANOVA 

Tukey’s post-hoc   
p-values 

F value P value A-M A-H M-H 

ST ingestion rate 
O. marina 2 6.995 0.027 0.023   

G. dominans 1 37.602 <0.0001 0.047 <0.0001 0.004 
F. ehrenbergii 1 27.293 0.001  0.001 0.007 

LT ingestion rate 
O. marina 2 11.765 0.002 0.002  0.016 

G. dominans 4 33.094 <0.0001 0.001 <0.0001 0.025 
Coxliella sp. 3 14.877 0.001 0.001 0.001  

Growth rate 
O. marina 2 4.350 0.044  0.026  

G. dominans 4 4.766 0.030 0.001 0.001  
Coxliella sp. 3 8.534 0.005  0.002  

GGEST Coxliella sp.  3 6.251 0.014  0.012  

GGELT 
G. dominans  4 37.009 <0.0001 <0.0001 <0.0001  
Coxliella sp.  3 24.870 <0.0001 <0.0001 <0.0001  
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Table 13. Repeated Measures Analysis of Variance (ANOVA) and Tukey’s post-hoc test results for microzooplankton percent feeding 
during microzooplankton short term (ST) ingestion rate experiments which were found to be statistically significant.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Parameter 

 
 
Microzooplankton 

 
 
Expt. 

ANOVAR 
pCO2 *time 

ANOVAR  
pCO2 

Tukey’s post-hoc   
p-values 

F value P value F value P value A-M A-H M-H 

 
Percent 
Feeding 

O. marina 2 1.734 0.170 10.531 0.011 0.026 0.013  
G. dominans 1 2.488 0.099 19.747 0.002 0.006 0.003  

F. ehrenbergii  1 14.948 <0.0001 1.956 0.222    
Coxliella sp. 3 3.575 0.038 2.922 0.130    
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Figure 17. Short term ingestion rate of A) Oxyrrhis marina B) G. dominans C) F. ehrenbergii 
and D) Coxliella sp. (average ± SD, n=3) feeding on Rhodomonas sp. cultured semi-
continuously in pCO2 treatments ambient moderate and high. Shared letters (A, B, C) on the 
graph indicate rates that did not differ significantly (Tukey’s post-hoc test, p>0.05). Refer to 
Tables 11 and 12 for data.  
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Figure 18. Percentage of A) Gyrodinium dominans B) Oxyrrhis marina C) Favella ehrenbergii 
and D) Coxliella sp. feeding on Rhodomonas sp. (average ± SD, n=3) cultured semi-
continuously in pCO2 treatments ambient moderate and high during a short term ingestion 
rate experiment over time (min). Percentage of Oxyrrhis marina and Favella ehrenbergii 
feeding on the optimal prey, Isochrysis galbana and Heterocapsa triquetra , respectively, 
were measured simultaneously as a positive control. Refer to Table 13 for ANOVAR results.  
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Table 14. Multiple linear regression models included the predictive Rhodomonas sp. 
variables:  cell bio-volume, POC cell-1, PON cell-1, Chl a cell-1and carbohydrates cell-1. The 
regression model eliminated all variables except cell bio-volume as the predictive factor 
that explained variation in short term ingestion rate. IR (Microzooplankton ST ingestion 
rate), BV (Rhodomonas sp. bio-volume). 

 
Microzooplankton 

Pearson’s correlation  
R2 

 
Adj. R2 

 
Equation P p-value 

O. marina 0.710       0.031 0.508 0.438 IR = 3.227 *10-5 + 0.022(BV) 
F. ehrenbergii 0.947 <0.0001 0.898 0.883          IR = 0.002 + 0.135(BV) 

G. dominans 0.919 <0.0001 0.845 0.823                  IR = 0 + 0.32 (BV) 
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Long Term Microzooplankton Ingestion Rate Experiments 

Microzooplankton LT ingestion rates of Rhodomonas sp. were affected by the pCO2 

treatment of their prey cells (Tables 11 and 12, Figures 22A, B and C).  The pCO2 trend in 

ingestion rates found in LT grazing experiments contrasted with that found in ST 

experiments for G .dominans and Coxliella sp. but not for O. marina (Table 11).  It was not 

possible to do a LT grazing experiment with F. ehrenbergii because a monospecific diet of 

Rhodomonas sp. was not sufficient for maintaining population growth for this 

microzooplankton.  

  Similar pCO2 effects on O. marina ingestion of Rhodomonas sp. were found in ST and 

LT ingestion rate experiments (Table 11, Figures 17A and 22A).  O. marina ingested 

Rhodomonas cultured in moderate pCO2 significantly faster than ambient and high pCO2 

cultured Rhodomonas sp. (Table 12).  Average LT ingestion rates for each pCO2 treatment 

ambient, moderate and high were: 9.2 ± 6.8, 24.7 ± 5.5 and 14.2 ± 1.4 cells grazer-1 day-1 

respectively.  High variability existed between the replicate ingestion rates found in ambient 

and moderate pCO2 treatments, with values ranging from 4 to 19 and 17 to 32 cells grazer-1 

d-1, respectively.  The ingestion rate values found for O. marina from short term ingestion 

rate experiments were faster than calculated LT ingestion rates.  

G. dominans LT ingestion rates of Rhodomonas sp. suggest a different pCO2 effect 

compared to ST ingestion rate findings (Table 11, Figures 17B and 22B).  G. dominans 

average LT ingestion rates of Rhodomonas sp. were 9.2 ± 1.7, 5.8 ± 0.55 and 4.5 ± 0.49 cells 

grazer-1 day-1 for ambient, moderate and high pCO2 respectively.  G. dominans ingested 

Rhodomonas sp. significantly slower with increasing pCO2 treatments (Table 12).  G. 
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dominans ingestion rate of ambient pCO2 Rhodomonas sp. was most variable, with values 

ranging from 7 to 12 cells grazer-1 d-1.  ST ingestion rates for G. dominans were also faster 

than LT ingestion rates.  

No significant pCO2 effect was found for the ingestion of Rhodomonas sp. by 

Coxliella sp. in ST grazing experiments.  But, in the LT grazing experiment, Coxliella sp. 

ingested ambient pCO2 Rhodomonas sp. significantly faster than moderate and high (Tables 

11 and 12, Figures 17D and 22C).  Average Coxliella sp. LT ingestion rates of ambient, 

moderate and high pCO2 Rhodomonas sp. were: 1248.4 ± 278.3, 193.1 ± 96 and 226.3 ± 

194.8 cells grazer-1 d-1, respectively.  Coxliella sp. ingestion rates of Rhodomonas sp. were 

highly variable between replicates in each pCO2 condition. Coxliella sp. ingestion rates of 

ambient Rhodomonas sp. were most variable with values ranging from 946 to 1585 cells 

grazer-1 d-1.  Ingestion rates of moderate and high pCO2 Rhodomonas sp. were much less 

than ambient with replicate values ranging from 45 to 298 and 66 to 530 cells grazer-1 d-1, 

respectively.  LT ingestion rate values of Coxliella sp. were faster than ingestion rate values 

found during the ST grazing experiment.  This is particularly evident when comparing 

ambient pCO2 Rhodomonas sp. ingestion rates from ST and LT experiments.  

Microzooplankton Growth Rate 

Elevated pCO2 resulted in a higher growth rates for all microzooplankton species 

during LT experiments (Table 11, Figure 23).  O. marina had significantly higher growth rates 

in high pCO2 (0.84 ± 0.05 d-1) than ambient (0.56 ± 0.08 d-1) (Table 12).  G. dominans had 

higher growth rates in moderate (0.66 ± 0.06 d-1) and high pCO2 (0.65 ± 0.02 d-1) than  
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Figure 19. Long term ingestion rate of A) Oxyrrhis marina B) G. dominans and C) Coxliella sp. 
feeding on Rhodomonas sp. (average ± SD, n=5) cultured semi-continuously in pCO2 
treatments ambient, moderate, and high over 24 h, after a 5 day acclimation period. 
Ingestion rates are calculated using equations by Heinbokel (1978).The letters A and B on 
the graph indicate Tukey’s post hoc significance (p<0.05). Refer to tables 11 and 12 for data.  
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Figure 20. Microzooplankton growth rates (average ± SD, n=5) for the microzooplankton 
Oxyrrhis marina, Gyrodinium dominans, and Coxliella sp. The letters A and B on the graph 
indicate Tukey’s post hoc significance (p<0.05). Refer to tables 11 and 12 for data.  
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ambient (0.33 ± 0.03 d-1) (Table 12).  Finally, growth rates of Coxliella sp. in high pCO2 (0.59 

± 0.07 d-1) were significantly higher than ambient (0.13 ± 0.04 d-1) (Table 12). 

Microzooplankton Gross Growth Efficiency 

 

Microzooplankton ingestion rates from both ST and LT grazing experiments were 

used to calculate Rhodomonas sp. C ingested in order to calculate microzooplankton GGE 

values.  When using ST ingestion rate values to determine prey carbon consumed GGE 

increased in elevated pCO2 for O. marina and G. dominans (Table 11; Figure 24A).  GGE 

values for O. marina were 10.9 ± 2.2, 12.2 ± 3.1 and 13.7 ± 1.8 % for ambient, moderate and 

high pCO2, respectively.  This trend suggests O. marina GGE is higher in moderate and high 

pCO2 in comparison to ambient.  However, results of a one way ANOVA reveal this trend to 

be not statistically significant.  GGE values for G. dominans were 3.6 ± 0.9, 5.9 ± 1.3 and 4.4 

± 0.4 % for ambient, moderate and high, respectively.  These results suggest G. dominans 

GGE is higher in moderate conditions than ambient and high (Figure 24A).  A non-

parametric Kruskal-Wallis (K) test confirms there is a significant difference in growth 

efficiency between pCO2 treatments (Table 11; p=0.004).  GGE values for Coxliella sp. were 

35.6 ± 14.8, 66.9 ± 32.5 and 85.8 ± 25.5% for ambient, moderate and high, respectively.  

GGE values for Coxliella sp. were significantly higher when feeding on high pCO2 cultured 

Rhodomonas sp. than ambient (Table 12). 

When using LT ingestion rate values to estimate prey of carbon consumed, GGE 

values for O. marina were 36.8 ± 30.1, 23.4 ± 9.7 and 43.3 ± 7.1 % for ambient, moderate 

and high pCO2, respectively (Table 11; Figure 24B).  These values suggest a slight increase in 

GGE for O. marina under high pCO2 in comparison to ambient and moderate.  However, as a 
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result of high variability this trend is not significant.  For G. dominans, GGE values calculated 

using LT ingestion rates were 33.0 ± 11.3, 84.6 ± 12.7 and 95.4 ± 9.3 % for ambient, 

moderate and high pCO2, respectively.  GGE values for G. dominans are significantly higher 

when feeding on Rhodomonas sp. cultured in moderate and high pCO2 conditions in 

comparison to ambient (Table 12).  Coxliella sp. GGE from LT ingestion rate values were 2.5 

± 1.1, 33.2 ± 18.0 and 56.7 ± 48.6% for ambient, moderate and high, respectively.  GGE 

values for Coxliella sp. were significantly higher when feeding on moderate and high pCO2 

cultured Rhodomonas sp. than ambient (Table12).  
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Figure 21. Gross growth efficiency (%) (average ± SD, n=5) of microzooplankton feeding on 
Rhodomonas sp. cultured semi-continuously in ambient moderate and high pCO2. A) Short 
term and B) long term ingestion rate values were used for determining Rhodomonas sp. pg 
C ingested by microzooplankton. The letters A and B on the graph indicate Tukey’s post hoc 
significance (p<0.05). Refer to tables 11 and 12 for data.  
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DISCUSSION 
 

The purpose of this study was to determine how OA can indirectly affect 

microzooplankton ingestion, population growth and GGE.  I accomplished this by first 

characterizing direct effects of OA on Rhodomonas sp. morphology, physiology and 

biochemistry.  Subsequently pCO2, acclimated Rhodomonas sp. were fed to 

microzooplankton, and microzooplankton ingestion and growth rates were measured, and 

from this, GGE was calculated.  I found that OA directly affected Rhodomonas sp. 

morphology and biochemistry.  Further, I found that microzooplankton grazing and growth 

was affected by OA-induced changes in Rhodomonas sp.  In order for me to clearly express 

how the OA-induced changes that I observed in Rhodomonas sp. affected microzooplankton 

grazing and growth, I begin with a review of what is known about the mechanisms that 

govern microzooplankton-phytoplankton predator-prey dynamics.  

Microzooplankton Selection of Phytoplankton Prey 

Microzooplankton are acutely sensitive to the size and condition of their prey and 

can be very selective of the phytoplankton they consume (e.g. Andersson et al. 1986, Verity 

1988, Flynn et al. 1996, John and Davidson 2001, Tillmann 2004, Meunier et al. 2011).  Prey 

cell size and morphology are recognized as 1st order determinants that influence 

microzooplankton-phytoplankton feeding relationships, including microzooplankton 

ingestion rates (e.g.  Jonsson 1986, Hansen 1992, 1994, Kamiyama and Arima 2001, 

Tillmann 2004).  This, in part, results from microzooplankton being physically constrained to 

ingestion of prey within a defined size range.  The width of this size window is dependent 
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upon the microzooplankton feeding mechanism and apparatus (Goldman et al. 1989, 

Hansen 1992, Hansen 1994, Jakobsen and Hansen 1997).  Ciliates like F. ehrenbergii and 

Coxliella sp. suspension feed.  The size of the ciliate’s oral diameter determines the 

phytoplankton size range it can ingest (Fenchel 1980, Capriulo 1982, Jonsson 1986).  In 

contrast to ciliates, some athecate dinoflagellates like O. marina and G. dominans feed by 

direct engulfment of their prey (Jeong et al. 2010).  These dinoflagellates are capable of 

ingesting prey at predator: prey size ratios between 0.15:1 and 5.2:1 (Tillman 2004).  The 

optimal linear size ratio for heterotrophic dinoflagellate and their prey across dinoflagellate 

taxa approximates 1:1 (Hansen 1994). 

While prey cell size is important, it does not exclusively explain observed differences 

in microzooplankton grazing behavior (Shannon et al. 2007, Montagnes et al. 2011).  Size 

selection by microzooplankton could be considered a passive mechanism that depends on 

contact probabilities and morphological limitations of the feeding structures.  In 

comparison, microzooplankton have shown to actively select for phytoplankton based on 

qualities other than size selection such as the secondary constituents like: food quality (e.g. 

Verity 1991, John and Davidson 2001, Chen et al. 2010, Roberts et al. 2011), surface 

chemical signatures (Verity 1988, Strom et al. 2003, Barofsky et al. 2010,) and prey 

physiological state (Verity 1988, Christaki et al. 1998, Landry et al. 1991, Gruber et al. 2009).  

The optimal foraging theory predicts grazers actively select for food with high 

nutritional value (MacArthur and Pianka 1966).  Research has been done to elucidate the 

mechanism behind biochemical recognition, and it is believed that microzooplankton 

ingestion and capture of prey may be facilitated by receptor mediated recognition of 
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particles, but these findings are still in their infancy (Wootton et al. 2007, Hartz et al. 2008, 

Roberts et al. 2011).  Ultimately, determining the optimal food for microzooplankton can be 

assessed by studying the growth efficiency of the grazer on various food resources.  Prey 

cellular essential fatty acids, carbohydrates, proteins and C:N stoichiometry all have been 

shown to contribute to prey food quality and can influence microzooplankton ingestion, 

growth and GGE (Flynn et al. 1996, John and Davidson 2001, Kattner et al. 2007, Suida and 

Dam 2010, Meunier et al. 2011, Leu et al. 2013).  

Given what is known about the microzooplankton-phytoplankton feeding 

relationships described above, I now discuss the observed pCO2 induced changes in 

Rhodomonas sp. that could explain the differences in microzooplankton grazing and growth 

rates found in this study, and discuss the implications my findings may have on higher 

trophic levels and nutrient and other biogeochemical cycles in an acidifying ocean.  

Direct OA Effects on Rhodomonas sp. 

The most pronounced effect of elevated pCO2 on Rhodomonas sp. was a ~60 and 

100% increase in Rhodomonas sp. cell bio-volume when cultured in moderate and high 

pCO2, respectively, relative to cells cultured under ambient pCO2.  The increase in cell bio-

volume was stepwise, whereby cell bio-volume was significantly greater in each succeeding 

pCO2 treatment concentration (Tables 6 and 8).  This response was also observed in 

experiments by Kendall (2015).  Similarly, an increase in cell bio-volume was observed for a 

different phytoplankton species, Emiliania huxleyi, cultured under the same pCO2 conditions 

used in this study (Wuori 2012).  In other phytoplankton species, observed increase in cell 

size under elevated pCO2 generally is correlated with increased rates of production of 
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organic carbon, resulting in higher organic carbon per cell (Zondervan et al. 2002, Iglesias-

Rodriguez et al. 2008).  While Rhodomonas sp. cultured in high pCO2 had, on average, more 

POC cell-1 than cells cultured under ambient and moderate pCO2, this trend was not 

significant and did not scale with the increase in Rhodomomas sp. cell bio-volume (Tables 6 

& 8).  Kendall (2015) and Wuroi (2012) also found no correlation between the increase in 

cell size and POC cell-1.  Wuroi (2012) suggested that the increase in E. huxleyi cell bio-

volume may be due to water entering the cell as a response to intracellular concentration of 

osmolytes and internal pH.  

In this study, the observed increase in Rhodomonas sp. total lipids cell-1 in moderate 

and high pCO2-cultured cells could also be contributing to the increased bio-volume of 

Rhodomonas sp.  The increase in Rhodomonas sp. lipids was found in experiments 3 and 4, 

the only experiments when lipids were measured.  Rhodomonas sp. cultured in moderate 

and high pCO2 had, on average, ~1.4 and 1.5 times more total lipids cell-1, respectively, than 

Rhodomonas sp. cultured in ambient pCO2 (Table 10).  Increases in cellular lipids have been 

observed in other phytoplankton species under elevated pCO2 (Carvalho and Malcata 2005, 

Hoshida et al. 2005, Malzahn et al. 2007, Leu et al. 2013).  For example, Malzahn et al. 

(2007) also found that the cryptophyte Rhodomonas salina increased their cellular 

concentrations of highly unsaturated fatty acids when grown under elevated pCO2.  While 

these studies have shown cellular total lipids of phytoplankton to be affected by elevated 

pCO2, very little is known about the effect OA may have on total lipid density.  For my study, 

when Rhodomonas sp. cellular total lipids were normalized to bio-volume, there was no 

longer a significant increase in total lipids µm-3.  This was because the percent change in 
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lipids (36% and 50% for moderate and high pCO2 Rhodomonas sp. cells, respectively) was 

smaller than the percent change I found in Rhodomonas sp. bio-volume (~ 60% and 100% 

increase in moderate and high pCO2 Rhodomonas sp. cells, respectively).  Therefore, as 

suggested by Wuroi (2012), there are likely additional variables that are contributing to the 

observed increase in Rhodomonas sp. bio-volume.  

With the significant increase in Rhodomonas sp. total lipids cell-1 that I observed, I 

expected to see a concurrent increase in POC cell-1 with elevated pCO2, as was observed in 

R. salina by Malzahn et al. (2007).  As stated above, POC cell-1 was, on average, greater in 

cells cultured under high pCO2, but this difference was not statistically significant, which as 

described above was also observed in Wuori (2012) for Emiliania huxleyi strain CCMP 2668.  

The likely explanation is that the variability in POC cell-1 replicate measurements for each 

treatment was too high to identify a statistically significant treatment effect (Table 6 and 8).  

Despite the significant effect of OA on Rhodomonas sp. cell bio-volume and cellular 

total lipids, many of the additional phytoplankton characteristics measured in this study (i.e. 

growth rate, Chl a, cellular PON and C:N) did not change significantly, or changes were 

variable between days and experiments under elevated pCO2.  Burkhardt et al. (1999) and 

Rost et al. (2003) suggest that because phytoplankton species possess different carbon 

acquisition mechanisms, some phytoplankton species may be more sensitive to changes to 

OA.  Phytoplankton species that evolved efficient CCM’s will be less sensitive to increasing 

levels of pCO2 than those that haven’t.  Elzenga et al. (2000) suggests that Rhodomonas sp. 

acquires inorganic carbon for photosynthesis exclusively in the form of CO2.  In contrast, 

however, Camiro-Vargas et al. (2005) showed that Rhodomonas sp. was able to continue to 
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grow in the absence of CO2 at pH levels of 10.1, suggesting Rhodomonas sp. is capable of 

direct HCO3
- uptake.  Cryptomonads have evolved to have a Rubisco structure that has high 

specificity for CO2 over O2 (Graham et al. 2009).  Therefore, if Rhodomonas sp. has an 

effective CCM, this could explain why I observed little to no changes in most Rhodomonas 

sp. physiological variables between treatments with the exception of total lipids.  

Mechanisms for which elevated pCO2 affects phytoplankton fatty acids are unclear, but it is 

possible, and this study suggests, Rhodomonas sp. is capable of allocating more fixed carbon 

towards fatty acid synthesis and storage under elevated pCO2 (Bermúdez et al. 2015).  

Microzooplankton Ingestion Rate 

Short Term Response 

My data show that microzooplankton grazing was significantly affected by OA-

induced changes to their prey.  ST microzooplankton ingestion rates were higher when 

grazers fed on moderate and high pCO2 acclimated Rhodomonas sp. compared to the 

ambient treatment for three of the four grazers tested.  I also observed O. marina to have a 

significant non-linear grazing response.  O. marina ingested moderate pCO2 Rhodomonas 

sp. significantly faster than ambient pCO2 Rhodomonas sp.  Despite the differences in size, 

feeding strategies and metabolism between ciliates and dinoflagellates, the increased 

feeding rates were found in both microzooplankton groups.  

In the short term grazing experiments I observed species-specific ingestion rate 

responses for the two tintinnids ciliates, F. ehrenbergii and Coxliella sp.  F. ehrenbergii 

grazed Rhodomonas sp. that was cultured under elevated pCO2 ~1-1.2 times faster than 

Rhodomonas sp. cultured under ambient pCO2.  In comparison, I observed no difference in 
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ingestion rates of Coxliella sp. across all Rhodomonas sp. treatments.  Tintinnids like F. 

ehrenbergii and Coxliella sp. have very narrow windows of optimal prey size because of 

their restrictive lorica (Jonsson 1986, Jeong et al. 2010).  The maximum food particle size for 

tintinnids is limited by the oral lorica diameter (Heinbokel 1978), and maximum clearance 

rates are a linear function of food particle size until a maximum size is reached (Fenchel 

1980).  Jonsson (1986) found tintinnids feed most efficiently on particle sizes ranging 

between 10 and 40% of their lorica diameter size.  In general, the optimal predator: prey 

cell size ratio for tintinnids is 8:1 (with the relevant predator size being the lorica opening 

diameter) (Hansen 1994).  Coxliella sp. has a lorica opening diameter of 45 µm (Verity 1985) 

compared to F. ehrenbergii with a lorica opening diameter of 104 µm (Jörgensen 1924).  

Therefore, the increase in prey cell size under OA conditions affected predator:prey size 

ratios differently for the two tintinnids and their difference in oral lorica diameter could 

help explain the species specific grazing responses observed in the ST grazing experiments 

for these ciliates.  To illustrate, F. ehrenbergii feeds most effectively on prey with an 

equivalent spherical diameter > 10µm (Stoecker et al. 1995, Kamiyama and Arima 2001).  

Predator: prey size ratios for F. ehrenbergii and Rhodomonas sp. were 16.5, 15.4 and 14.2 in 

ambient, moderate and high pCO2 treatments, respectively.  Therefore, the increase in cell 

size under OA resulted in the prey being closer to the optimal predator:prey size ratio for F. 

ehrenbergii (8:1) (Table 15).  The predator:prey size ratio of Coxliella sp. and ambient pCO2 

cultured Rhodomonas sp. was 7.21, deviating only 0.79 from the reported optimal 

predator:prey size ratio for tintinnids (Hansen 1994) (Table 15).  For moderate and high 

pCO2 treatments the deviation in predator:prey size ratio from the optimal size ratio was 
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even greater.  Predator: prey size ratios for moderate and high pCO2 treatments were 5.82 

and 5.44, respectively, deviating 2.18 and 2.56 from the optimal predator:prey size ratio 

(Hansen 1994) (Table 15).  Because the increase in Rhodomonas sp. size resulted in the 

predator: prey size ratio decreasing below the optimal value, I would have expected to 

maybe see a reduction in feeding rates by Coxliella sp. on moderate and high pCO2 

Rhodomonas sp.  While Coxliella sp. did ingest, on average, slightly more ambient pCO2 

Rhodomonas sp. than moderate and high pCO2 Rhodomonas sp., I found no significant 

difference in Coxliella sp. ingestion rate between pCO2 treatments (Figure 20).  It’s possible 

that the difference in observed prey size in this study was not great enough for Coxliella sp. 

to alter its grazing response, or perhaps Coxliella sp. may be more acutely sensitive to other 

changes in prey such as food quality. 

The heterotrophic dinoflagellate, O. marina, fed on Rhodomonas sp. that was 

cultured under in moderate pCO2 ~1.2 times faster than Rhodomonas sp. cultured under 

ambient pCO2.  I did not observe a significant stepwise increase in O. marina ingestion of 

Rhodomonas sp. with increasing pCO2 acclimated prey. Instead, I observed a non-linear 

response, with O. marina ingesting high pCO2 acclimated prey slower than moderate 

acclimated prey (Table 9).  O. marina (18 µm ESD, Jeong et al. 2010) has been reported to 

ingest prey within a size spectrum ranging from 2 µm to 20 µm (Montagnes et al. 2011, 

Roberts et al. 2011, Guo et al. 2013).  When offered prey of varying size, O. marina can feed 

and achieve high growth rates on flagellates >4 µm but will actively select prey larger in size 

(>7 µm) (Goldman et al. 1989, Hansen et al. 1996, Jeong et al. 2003).  A review by Jeong et 

al. (2010) reported that for O. marina, the prey Heterosigma akashiwo (11.5 µm ESD), with 
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a predator: prey ratio of 1.2, supported maximum growth, ingestion and clearance rates.  

Predator: prey size ratios for O. marina and Rhodomonas sp. in this study were 2.82, 2.48 

and 2.31 in ambient, moderate and high pCO2 treatments, respectively.  Therefore, the 

increase in cell size under OA resulted in the predator:prey size ratio trending towards a 

more optimal ratio for O. marina (1.2) (Table 15).  

The dinoflagellate, G. dominans (20µm ESD, Naustvoll 2000), fed on Rhodomonas sp. 

cultured under moderate and high pCO2 ~ 1.1 and 1.25 times faster than Rhodomonas sp. 

cultured under ambient pCO2 (Table 9).  G. dominans is capable of ingesting prey cells 

ranging in size from 6 to 43 µm ESD (Naustvoll 2000).  Nakamura et al. (1995) found that G. 

dominans clearance rates on Heterocapsa triquetra (15.3µm ESD) were 2 times faster than 

when feeding on the smaller Nephroselmis aff. rotunda (4.5µm ESD).  In agreement, when 

G. dominans was offered twelve prey of varying sizes and types, including Rhodomonas 

baltica (6.4 µm ESD), H. triquetra (10.9 µm ESD) supported the highest growth rate (~0.5 d-

1), and had a predator: prey size ratio of 2.4 (Naustvoll 2000).  Therefore, G. dominans 

appears to feed most efficiently on larger prey.  In this study the increase in prey cell size 

under moderate and high pCO2 resulted in G. dominans predator: prey size ratios of 2.96 

and 2.72, respectively.  These ratios are closer to the optimal 2.4 ratio compared to the 

ambient treatment (3.18) (Table 15).  

While there are other possible mechanisms that could explain the increase in 

microzooplankton ingestion rates observed in this study under elevated pCO2, multiple  
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Table 15. Predator:prey size ratios of O. marina, G. dominans, F. ehrenbergii and Coxliella 
sp. feeding on Rhodomonas sp. cultured under ambient, moderate and high pCO2. 
Equivalent spherical diameter (ESD) of Rhodomonas sp. and of the dinoflagellates O. marina 
and G. dominans were used to calculate predator:prey size ratios. ESD of Rhodomonas sp. 
was calculated using: (biovolume/0.523)0.33 (Hansen 1994).For the ciliates, F. ehrenbergii 
and Coxliella sp., predator:prey size ratios were obtained using the oral lorica diameter and. 
Rhodomonas sp. ESD. The optimal predator:prey size ratios listed in the table are from 
Jeong et al. (2010) (O. marina), Naustvoll (2000) (G. dominans) and Hansen et al. (1994) (F. 
ehrenbergii and Coxliella sp.).  

 

 

Species 
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Rhodomonas sp. 

 

Moderate 

Rhodomonas sp.  

 

High 

Rhodomonas sp. 

 

Optimal 

predator:prey  

O. marina 

(18µm ESD) 

 

2.82 2.48 2.31 1.2 

G. dominans 

(20 µm ESD) 

 

3.18 2.96 2.72 2.4 

Favella 

ehrenbergii 

(104 µm oral 

diameter) 

 

16.5 15.4 14.2 8 

Coxliella sp. 

(45 µm oral 

diameter) 

7.21 5.82 5.44 8 
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linear regression models showed that the stepwise increase in Rhodomonas sp. cell bio-

volume across ambient, moderate and high pCO2 treatments explained 43, 82, and 88% of 

the variability in O. marina, G. dominans and F. ehrenbergii short term ingestion rates, 

respectively (Table 10).  The non-linear short term grazing response observed for O. marina 

suggests that in addition to cell size, other OA-induced prey characteristics were influencing 

the microzooplankton’s grazing response. 

Long Term Response 

In this study I observed a statistically significant OA effect on microzooplankton LT 

ingestion of pCO2 acclimated Rhodomonas sp., where cells grown in ambient pCO2 were 

consistently grazed at faster rates by the dinoflagellate G. dominans and the ciliate, Coxliella 

sp.  This finding is in contrast, for these two grazers, to what I found in ST ingestion rate 

experiments (Table 9).  In LT grazing experiments G. dominans ingested ambient pCO2 

treatment Rhodomonas sp. ~ 2 and 1.6 times faster than moderate and high Rhodomonas 

sp., respectively, whereas the ciliate Coxliella sp. ingested ambient pCO2 treatment 

Rhodomonas sp. ~ 6 times faster than moderate and high treatments, respectively.  When 

compared to the literature findings, Coxliella sp. average LT ingestion rate of ambient pCO2 

cultured Rhodomonas sp. was higher than I expected (Verity 1985).  Average Coxliella sp. LT 

ingestion rates of ambient, moderate and high pCO2 Rhodomonas sp. were: 1248.4 ± 278.3, 

193.1 ± 96.0 and 226.3 ± 194.8 cells grazer-1 d-1, respectively. However, under similar 

temperature and saturating prey carbon concentration conditions to this study, Verity 

(1985) observed that Tintinnopsis vasculum (80µm length, 45 µm oral lorica diameter) 

ingested 600-800 pg C h-1 (equivalent to ~288-384 Rhodomonas sp. cells day-1).  Therefore, 
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there is a possibility that the high Coxliella sp. grazing rates in ambient pCO2 treatments are 

an experimental artifact.  The high ambient Coxliella sp. ingestion rate calculated using 

Heinbokel (1978) equations is being driven by the unexpectedly low Rhodomonas sp. 

growth rates values that were found in the microzooplankton treatment bottles.  Because I 

was unable to dilute Rhodomonas sp. cell densities prior to the 24 h ingestion rate 

experiment, I believe the low Rhodomonas sp. growth rate values in the microzooplankton 

treatment bottles are from prey reaching capacity in the ambient pCO2 treatments (due to 

high prey cell densities).  However, despite Coxliella sp. ingestion rates of ambient pCO2 

Rhodomonas sp. being greater than published values, I did observe a significant trend 

towards lower microzooplankton ingestion rates on moderate and high pCO2 cultured 

Rhodomonas sp. compared to ambient pCO2 cultured Rhodomonas sp. for both the ciliate 

Coxliella sp. and the dinoflagellate G. dominans. 

A fundamental question for Coxliella sp. and G. dominans is, why were the observed 

trends in microzooplankton grazing different between short- and long-term grazing 

experiments?  It has been recognized that when working with species that show 

compensatory feeding, i.e. the ability to adjust feeding rates and behavior as a consequence 

of changes in prey food quality (Meunier et al. 2011), that it is important to conduct long 

incubations and allow the organism to precondition to the prey for several days to allow for 

stabilization of feeding rates (Calbet et al. 2013).  The longer term grazing experiments 

conducted here allowed the microzooplankton species to acclimate and adjust their grazing 

response to any secondary pCO2 changes in Rhodomonas sp., such as food quality.  

Therefore the grazing response by microzooplankton in long term experiments may have 



 

93 
 

been different from ST grazing rates because microzooplankton were altering their grazing 

in response to both primary (prey cell size) and secondary (biochemical constituents) OA 

induced changes in Rhodomonas sp. biology.   

A secondary constituent that may explain the observed change in trend in 

microzooplankton grazing response between short- and long-term experiments is the 1.4 

and 1.5 times more total fatty acid content in cells of Rhodomonas sp. cultured in moderate 

and high pCO2, respectively, than under ambient pCO2. On a per cell basis microzooplankton 

gain more nutritional value from ingesting the lipid rich high pCO2 acclimated Rhodomonas 

sp. cell than an ambient pCO2 acclimated Rhodomonas sp. cell.  An additional benefit to 

ingesting lipid rich cells at slower rates is that G. dominans and Coxliella sp. reduce energy 

expenditure towards prey searching and capturing.  The grazing response I observed is 

consistent with John and Davidson (2001) and Chen et al. (2010).  Chen et al. (2010) showed 

that the oligotrichous ciliate, Strobilidium sp., consumed the phytoplankton species, 

Nannochloropsis sp., at lower rates than Isochrysis galbana, presumably because 

Nannochloropsis sp. contained more polyunsaturated fatty acids than I. galbana.  In another 

study, the microflagellate, Paraphysomonas vestita, also demonstrated a similar feeding 

behavior when presented two prey of similar size but with differing fatty acid composition 

(John and Davidson 2001).  In that study, P. vestita ingested the prey containing more total 

fatty acids, Pavlova lutheri, at a lower rate than the fatty acid poor I. galbana.  These 

findings suggest that my observations of G. dominans and Coxliella sp. ingesting moderate 

and high pCO2 Rhodomonas sp. cells at a slower rate than ambient pCO2 cultured 
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Rodomonas sp. may result from grazers potentially achieving the same nutritional benefit 

because of the difference in prey total fatty acids.  

The lower ingestion rates of moderate and high cultured pCO2 Rhodomonas sp. for 

G. dominans and Coxliella sp. in LT grazing experiments was a pattern not observed in the 

dinoflagellate O. marina.  Instead, O. marina ingested moderate pCO2 Rhodomonas sp. ~2.7 

and 1.7 times faster than ambient and high pCO2 Rhodomonas sp., respectively.  A similar 

non-linear grazing trend by O. marina was also observed in the short term experiments (O. 

marina ingested moderate pCO2 Rhodomonas sp. ~1.2 faster than ambient pCO2 

Rhodomonas sp. and high pCO2 Rhodomonas sp. at equal rates to the moderate and 

ambient pCO2 treatment ) (Table 9).    

It is unclear to me why no change in grazing response was observed between short 

and long term ingestion rate experiments for O. marina.  In addition, the question remains, 

why did O. marina ingest moderate pCO2 cultured Rhodomonas sp. significantly faster than 

ambient and high in both short and long term grazing experiments?  A similar inverted U-

shaped ingestion rate response to elevated pCO2 was also observed in the copepod species, 

Pseudocalanus acuspes, isolated from Svalbard (Thor and Oliva 2015).  The authors 

proposed that this population of copepod species had adapted to feeding most efficiently in 

a mid-range pH because it resided in estuarine waters that can commonly experience 

changes in pH due to discharges of low-pH water from rivers and glaciers.  

Microzooplankton have demonstrated to have a high tolerance to direct effects of pCO2/pH 

(Suffrian et al. 2008, Aberle et al. 2013), and the population of O. marina used in this study 
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has been maintained in a laboratory setting for many years.  As such, pH variability wasn’t a 

likely explanation for the observed grazing responses observed here.  

Based on the OA induced increase in Rhodomonas sp. cell size and cellular total lipid 

content with increasing pCO2, I expected to see a linear increase in O. marina ingestion rate 

during short term grazing experiments and linear decrease in O. marina long term ingestion 

rates as demonstrated by the other dinoflagellate, G. dominans.  But because I observed the 

same grazing response pattern to occur for O. marina in both ST and LT experiments there 

is strong evidence to suggest the non-linear grazing response is true for this 

microzooplankton species when feeding on pCO2 acclimated prey and not coincidental.  O. 

marina grazing response appears to be more complex and may be dependent upon the 

interplay of prey characteristics, thus making it difficult to identify the mechanism behind 

the ingestion rate responses. 

 While, O. marina has been shown to discriminate prey based on size and 

biochemical composition (Wootton et al. 2007, Roberts et al. 2011, Meunier et al. 2011), 

the grazer’s response may be affected by additional prey qualities (e.g. prey protein 

content, motility, chemical exudates etc.).  It is possible a characteristic of Rhodomonas sp., 

which was not characterized in this study, may have been affected by pCO2 in a non-linear 

fashion.  For example, Wuori (2012) observed that under elevated pCO2, a non-calcifying 

strain of E. huxleyi showed a non-linear response in particulate dimethylsulfoniopropionate 

(DMSPp), a chemical known to retard some microzooplankton grazing response (Strom et al. 

2003).  While Rhodomonas sp. does not produce DMSP (Keller et al. 1989), another 



 

96 
 

secondary biochemical constituent of Rhodomonas sp. that was uncharacterized in this 

study may have behaved in a non -linear fashion.  

Microzooplankton Population Growth 

My data show that microzooplankton specific growth rates and GGE were 

significantly affected by the influence of OA on their prey.  Higher growth rates were 

observed for all microzooplankton species tested when feeding on Rhodomonas sp cultured 

under moderate and high pCO2 (Table 9).  The dinoflagellates, O. marina and G. dominans, 

grew at rates ~ 1.5 and 2 times faster when feeding on moderate and high pCO2 cultured 

Rhodomnonas sp., respectively, in comparison to ambient pCO2 cultured Rhodomonas sp.  

The ciliate, Coxliella sp. grew at rates ~ 3 and 4 times faster when feeding on moderate and 

high pCO2 cultured Rhodomonas sp., respectively, compared to ambient cultured 

Rhodomonas sp.  The fact that microzooplankton grew at higher rates on Rhodomonas sp. 

cultured under high pCO2, yet grazed these same cells at the lowest observed rates, 

supports my conclusion that OA-induced changes to Rhodomonas sp. food quality is 

affecting microzooplankton grazing.  This is further supported by the higher observed GGEs 

for G. dominans and Coxliella sp. when feeding on high pCO2 cultured Rhodomonas sp.  

The results of this study show that when feeding on high pCO2 Rhodomonas sp. the 

grazers O. marina, G. dominans and Coxliella sp. all showed higher GGE, calculated from 

using both short- and long-term ingestion rates (Table 9).  This trend was only statistically 

significant for G. dominans and Coxliella sp. (Table 9). In the LT grazing experiments, G. 

dominans GGE increased by ~50 and 62% when feeding on moderate and high pCO2 

cultured Rhodomonas sp. compared to ambient grown cells.  Similarly in LT grazing 
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experiments with Coxliella sp., GGE by ~30 and 54% when feeding on moderate and pCO2 

cultured Rhodomonas sp. compared to ambient grown cells. 

Microzooplankton GGE values can range from 0 to 80%, but in general fall within the 

accepted 20-30% average range (Straile 1997). Microzooplankton GGEs calculated here fall 

below, within and above the generally accepted 20-30% average range.  Overall, for all 

microzooplankton tested, I found GGEs from ST ingestion rate experiments likely 

underestimated the true growth efficiency because microzooplankton feeding rates may 

not have been at steady state.  A possible explanation for this is that starved 

microzooplankton may feed at faster rates compared to rates averaged over longer time 

periods, with resulting lower assimilation efficiencies than microzooplankton maintained on 

a constant prey concentration.  For example, Schmoker et al. (2011) observed lower GGE 

values (6, 17 and 30%) for G. dominans when given a single pulse of food in comparison to a 

constant concentration over time.  I also found that G. dominans GGE values calculated 

from LT ingestion rates on moderate (GGE 84.6%) and high (GGE 95.4%) pCO2 Rhodomonas 

sp. are likely overestimates since they fall above the 0 to 80% range stated above (Table 9).  

Some additional error in the GGE calculations may exist because I used reported 

microzooplankton pg C values from literature rather than empirically deriving this value by 

measuring each microzooplankton’s bio-volume. 

The significant increase in total fatty acids found in high pCO2 Rhodomonas sp. could 

be contributing to the higher microzooplankton specific growth rates and GGE under 

elevated pCO2.  Both dinoflagellates and ciliates are observed to grow faster and have 

higher GGE when feeding on prey with increased fatty acids (John and Davidson 2001, Chen 



 

98 
 

et al, 2010).  Certain essential fatty acids are a critical factor of food quality for 

microzooplankton and other consumers to ensure maximum population growth (Kattner et 

al. 2007, Leu et al. 2013).  In addition, I found no negative OA effects on Rhodomonas sp. 

food quality such as elevated cellular C:N stoichiometry or low concentrations of cellular 

carbohydrates.  Because I only measured total cellular lipids of Rhodomonas sp. and not 

specific lipid groups, I can only speculate on the degree to which increased total lipids 

added to the nutritional value of the prey.  Protein content of Rhodomonas sp. was also not 

measured in this study, so it is unclear whether protein content may be a contributing food 

quality variable.  But because I didn’t observe a significant difference in Rhodomonas sp. 

cellular PON content with elevated pCO2 it is probably unlikely there would be a significant 

difference in protein content.  

Ecological Significance 

Microzooplankton are instrumental players in the trophic interactions and 

biogeochemical processes at the base of the pelagic marine food web (Calbet & Landry 

2004, Sherr and Sherr 2007).  Despite studies suggesting microzooplankton have a high 

tolerance to direct effects of increasing pCO2 concentrations (Suffrian et al. 2008, Aberle et 

al. 2013), this study provides evidence that there are direct OA effects on phytoplankton 

that can act as mechanisms for changes in microzooplankton grazing, population growth 

and GGE.  With studies showing the direct response of phytoplankton morphology, 

physiology and biochemistry to OA to be species specific it is uncertain how widespread and 

prevalent the observed microzooplankton grazing and growth responses in this study will be 

in nature in future acidifying oceans . But if these microzooplankton responses are 



 

99 
 

prevalent, the question is: how could such changes in microzooplankton grazing and growth 

impact the marine food web in an acidifying ocean?  

Elevated pCO2 directly affected aspects of Rhodomonas sp. that are important to 

microzooplankton selection and ingestion of prey.  The increase in cell size resulted in the 

prey being more optimal in size for some of the microzooplankton species studied.  

Similarly, the increase in total fatty acids possibly resulted in the microzooplankton species 

ingesting more lipids cell-1 under elevated pcO2 conditions.  Depending on how OA affects 

the biology of the wide array of phytoplankton species, there will likely be an effect on 

microzooplankton prey selectivity.  Microzooplankton may also be more selective of some 

phytoplankton species, like Rhodomonas sp., that are larger in size and more lipid rich than 

phytoplankton that are lipid poor, e.g. Thalassiosira pseudonona (Rossoll et al. 2012), under 

OA conditions.  This active selection by microzooplankton could lead to changes in the 

overall phytoplankton community composition and structure in future acidified oceans.  The 

direct bottom-up influence of OA on phytoplankton will also put selective pressure on 

which microzooplankton species are capable of thriving.  For example, prey availability for 

microzooplankton may be impacted under OA conditions if there is a shift towards larger 

prey cell sizes, as suggested in this current study.  However, it is important to recognize 

phytoplankton community composition may be more heavily influenced by other changing 

environmental variables, like increasing temperatures under future climate conditions 

rather than OA.  Increasing surface ocean temperature could lead to a more stratified water 

column and limiting nutrients concentrations (Lewandowska et al. 2014).  Consequently, 

this may favor smaller phytoplankton cells that are more competitive at taking up nutrients.  
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Therefore, it will be important to consider interactive effects of all changing environmental 

variables in future surface oceans when predicting phytoplankton community structure.  

The microzooplankton-mediated changes resulting from OA may propagate through 

the food web and have potential effects on the fitness and recruitment of higher trophic 

levels (Malzahn et al. 2010, Schoo et al. 2012, Rossoll et al. 2012).  Because 

microzooplankton GGE increased, the efficiency of the marine pelagic food web potentially 

may increase, possibly translating into more biomass in higher trophic levels, including 

commercially valuable fish populations.   

While increased microzooplankton GGE may lead to stronger coupling with higher 

trophic levels, lower microzooplankton grazing and increased assimilation efficiency (as 

suggested by elevated GGE) could result in reduced POM/DOM production.  Decreased 

egestion of organic matter and increased assimilation rates would dampen the role 

microzooplankton play in remineralizing nutrients in future acidified oceans.  As a result this 

would have cascading effects on nutrient regeneration in the euphotic zone.  

This is the first study to determine the indirect effects of OA on microzooplankton 

ingestion, growth and GGE.  My findings show several pathways by which microbial food 

webs may be affected in a future ocean, and provide the foundation for future studies 

exploring this topic.  Further research can explore whether other microzooplankton may 

have a species-specific response like I observed to OA induced changes in prey biology.  This 

study was limited to only a few microzooplankton species and one phytoplankton prey 

species.  In order improve the ability to extrapolate laboratory-based experiments on 
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individual species to natural communities more research is needed on a variety of 

microzooplankton and prey species.  
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APPENDIX A 
 

CONTINUATION OF PHYTOPLANKTON CHARACTERIZATION 

 

Table A1. Physiological parameters (average ± SD) of Rhodomonas sp. measured over time for semi-

continuous experiments 1, 2, 3 and 4 in pCO2 treatments ambient (400ppmv), moderate (750ppmv) 

and high (1000ppmv).  

Parameter Expt #, (days) Ambient Moderate High 

 
Growth rate (d-1) 

  1 (2-10)   0.59 ± 0.09 0.57 ± 0.10 0.56 ± 0.10 
  2 (2-17)    0.55 ± 0.07 0.57 ± 0.05 0.57 ± 0.08 
  3 (2-16)  0.58  ± 0.12 0.61 ± 0.09 0.65  ± 0.04 
  4 (2-16)   0.56 ± 0.07 0.56 ± 0.08 0.55 ± 0.06 

 
Cell bio-volume 

(µm3) 

  1 (1-10)               145.2 ± 13.0 176.7 ± 15.3 186.9 ± 25.6 
  2 (8-12, 16-17) 154.3 ± 19.2 216.4 ± 32.9 283.6 ± 47.0 
  3 (8-16) 151.0 ± 18.1 247.6 ± 25.1 289.5 ± 25.7 
  4 (8-16)               155.6 ± 18.3 241.5 ± 29.6 296.0 ± 32.8 
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Figure A1. Growth rate (d-1) (average ± SD, n=3) of Rhodomonas sp. cultured semi-continuously A) 

from day 1 to day 10 B) day 9 to 10 in pCO2 treatments ambient, moderate and high for experiment 

1. Experiment 1 corresponds to Rhodomonas sp. prey used in short term grazing experiments with 

G. dominans and F. ehrenbergii on day 10
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Figure A2. Growth rate (d-1) (average ± SD, n=3) of Rhodomonas sp. cultured semi-continuously A) 

from day 1 to day 10, B) day 9 to 10 and C) day 16 to 17 in pCO2 treatments ambient, moderate and 

high for experiment 2. Experiment 2 corresponds to Rhodomonas sp. prey used in short term and 

long term grazing experiments with O. marina on days 10 and 17, respectively.   
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Figure A3. Growth rate (d-1) (average ± SD, n=3) of Rhodomonas sp. cultured semi-continuously A) 

from day 1 to day 16, B) day 9 to 10 and C) day 15 to 16 in pCO2 treatments ambient, moderate and 

high for experiment 3. Experiment 3 corresponds to Rhodomonas sp. prey used in short term and 

long term grazing experiments with Coxliella sp. on days 10 and 16, respectively.  
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Figure A4. Growth rate (d-1) (average ± SD, n=3) of Rhodomonas sp. cultured semi-continuously A) 

from day 1 to day 16 and B) day 15 to 16 in pCO2 treatments ambient, moderate and high for 

experiment 4. Experiment 4 corresponds to Rhodomonas sp. prey used in long term grazing 

experiments with Gyrodinium dominans on day 16.   
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Figure A5. Rhodomonas sp. cell bio-volume (µm3) (average ± SD, n=3) cultured semi-continuously on 

days 1 to 10 in pCO2 treatments ambient, moderate and high for experiment 1. Experiment 1 

corresponds to Rhodomonas sp. prey used in short term grazing experiments with G. dominans and 

F. ehrenbergii on day 10.  
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Figure A6. Rhodomonas sp. cell bio-volume (µm3) (average ± SD, n=3) cultured semi-continuously on 

days 8-12; 16-17 in pCO2 treatments ambient, moderate and high for experiment 2. Experiment 2 

corresponds to Rhodomonas sp. prey used in short and long term grazing experiments with O. 

marina on day 9 and 17, respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

109 
 

Day of Expt. 3

8 9 10 11 12 13 14 15 16

R
h

o
d

o
m

o
n

a
s
 s

p
. 
c
e
ll 

b
io

-v
o

lu
m

e
 (

µ
m

3
)

100

150

200

250

300

350

400

Ambient

Moderate

High

Coxliella sp.
ST grazing Expt.

Coxliella sp.
LT grazing Expt.

 

Figure A7. Rhodomonas sp. cell bio-volume (µm3) (average ± SD, n=3) cultured semi-continuously on 

days 8 to 16 in pCO2 treatments ambient, moderate and high for experiment 3. Experiment 3 

corresponds to Rhodomonas sp. prey used in short and long term grazing experiments with Coxliella 

sp. on day 10 and 16, respectively.   
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Figure A8. Rhodomonas sp. cell bio-volume (µm3) (average ± SD, n=3) cultured semi-continuously on 

days 8 to 17 in pCO2 treatments ambient, moderate and high for experiment 4. Experiment 4 

corresponds to Rhodomonas sp. prey used in long term grazing experiments with Gyrodinium 

dominans on day 16.   
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Figure A9. Rhodomonas sp. cellular chlorophyll a (pg cell-1) (average ± SD, n=3) for pCO2 treatments 

ambient, moderate and high on day 10 of semi-continuous culturing during ST grazing  experiments 

with G. dominans and F. ehrenbergii (Expt. 1), O. marina (Expt. 2), Coxliella sp. (Expt. 3). No short 

term grazing experiment was done during experiment 4.  
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Figure A10. Rhodomonas sp. cellular chlorophyll a (pg cell-1) average ± SD, n=3) for pCO2 treatments 

ambient, moderate and high on the last day of semi-continuous culturing during LT grazing 

experiments with O. marina (Expt. 2), Coxliella sp. (Expt. 3) and G. dominans (Expt. 4).  
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Figure A11. Rhodomonas sp. cellular chlorophyll a density (pg µm3) (average ± SD, n=3) for pCO2 

treatments ambient, moderate and high on day 10 of semi-continuous culturing during ST grazing  

experiments with G. dominans and F. ehrenbergii (Expt. 1), O. marina (Expt. 2), Coxliella sp. (Expt. 3).  
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 Figure A12. Rhodomonas sp. cellular chlorophyll a density (pg µm3) average ± SD, n=3) for pCO2 

treatments ambient, moderate and high on the last day of semi-continuous culturing during LT 

grazing experiments with O. marina (Expt. 2), Coxliella sp. (Expt. 3) and G. dominans (Expt. 4).    
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Figure A13. Rhodomonas sp. cellular chlorophyll a per carbon (pg C-1) (average ± SD, n=3) for pCO2 

treatments ambient, moderate and high on day 10 of semi-continuous culturing during ST grazing  

experiments with G. dominans and F. ehrenbergii (Expt. 1), O. marina (Expt. 2), Coxliella sp. (Expt. 3).  
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Figure A14. Rhodomonas sp. cellular chlorophyll a per pg carbon (pg chl a pg C-1) (average ± SD, n=3) 

for pCO2 treatments ambient, moderate and high on the last day of semi-continuous culturing 

during LT grazing experiments O. marina (Expt. 2), Coxliella sp. (Expt. 3) and G. dominans (Expt. 4).  
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Figure A15. Rhodomonas cellular carbohydrates per cell (pg cell-1) (average ± SD, n=3) for pCO2 

treatments ambient, moderate and high on day 10 of semi-continuous culturing during ST grazing  

experiments with G. dominans and F. ehrenbergii (Expt. 1), O. marina (Expt. 2), Coxliella sp. (Expt. 3).  
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Figure A16. Rhodomonas cellular carbohydrates per cell (pg cell-1) (average ± SD, n=3) for pCO2 

treatments ambient, moderate and high on the last day of semi-continuous culturing during LT 

grazing experiments with O. marina (Expt. 2) and Coxliella sp. (Expt. 3). 

 

 

 

 

 

 

 

 



 

119 
 

APPENDIX B 

CONTINUATION OF MICROZOOPLANKTON GRAZING 

Microzooplankton Short Term Ingestion Rate 

Total Prey Cells Ingested 

 

Microzooplankton, with the exception of Coxliella sp., showed increased feeding on 

high and moderate pCO2 Rhodomonas sp. cells compared to ambient at the first time point 

(Figures B1, B2, B3 and B4).  Though there was a strong treatment effect on total prey cells 

ingested by microzooplankton for the first time point, the size of this effect varied over time 

for each microzooplankton.  O. marina showed the greatest difference between treatments 

in number of Rhodomonas sp. cells ingested at the second sample time point, 60 minutes 

(Figure B1).  At the final sample time point, 120 minutes, the number of cells ingested by O. 

marina in the different treatments no longer increased linearly with time (Figure B1).  For G. 

dominans and F. ehrenbergii the number of cells ingested in each treatment continued to 

increase in a linear fashion over the time of the ST grazing experiment (Figure B2 and B3).  

For G. dominans, more moderate and high pCO2 cells are ingested at time point sampled 

than ambient pCO2 Rhodomonas sp. (Figure B2).  For F. ehrenbergii, a stepwise increase in 

the number of cells of Rhodomonas sp. occurs for ambient, moderate and high pCO2 (Figure 

B3).  The number of cells of Rhodomonas sp. ingested by Coxliella sp. over time does not 

significantly vary between pCO2 treatments (Figure B4). 

Microzooplankton Ingestion Rate: For Each Sample Time Point 

 

Although the overall microzooplankton ingestion rates are the primary results of this 

study, looking in detail at rates calculated for individual time points can provide additional  
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Table B1. Replicate Linear fit short term ingestion rates (cells grazer-1 min-1) of Favella ehrenbergii, 

Gyrodinium dominans, and O. marina when feeding on ambient, moderate and high pCO2 

Rhodomonas sp. The linear regression model equation and R2 is listed for each treatment replicate 

(A, B and C).   

 
 

Microzooplankton 

 
pCO2  

treatment 

 
Treatment 
replicate 

 
Linear regression model 

equation 

 
 

R2 

Average 
slope = 

ingestion 
rate 

 
 
 
 

Favella 
ehrenbergii 
(0-45min) 

 
Ambient 

A 𝑦 = 0.3333𝑥 + 0.4434 0.9879  
0.35 ± 
0.015 

B 𝑦 = 0.3608𝑥 + 0.4082 0.9955 

C 𝑦 = 0.3513𝑥 + 0.5946 0.9597 

 
Moderate 

A 𝑦 = 0.3864𝑥 + 0.9122 0.9707  
0.39 ± 
0.030 

B 𝑦 = 0.3636𝑥 + 1.2741 0.9620 

C 𝑦 = 0.4177𝑥 + 0.9579 0.9727 

 
High 

A   𝑦 = 0.465𝑥 + 1.2788 0.9795  
0.47 ± 
0.015 

B 𝑦 = 0.4633𝑥 + 1.2362 0.9808 

C 𝑦 = 0.4923𝑥 + 0.9844 0.9817 

 
 
 
 

Gyrodinium 
dominans 
(0-90min) 

 
Ambient 

A 𝑦 = 0.0569𝑥 + 0.7374 0.9798  
0.053 ± 
0.003 

B 𝑦 = 0.0506𝑥 + 0.7524 0.9677 

C 𝑦 = 0.0524𝑥 + 0.7457 0.9706 

 
Moderate 

A 𝑦 = 0.0586𝑥 + 0.9962 0.9458  
0.058 ± 
0.003 

B 𝑦 = 0.0581𝑥 + 1.0633 0.9358 

C 𝑦 = 0.0583𝑥 + 0.9893 0.9479 

 
High 

A 𝑦 = 0.0677𝑥 + 1.0888 0.9470  
0.067 ± 
0.001 

B 𝑦 = 0.0659𝑥 + 1.2648 0.9189 

C 𝑦 = 0.0677𝑥 + 1.1126 0.9447 

 
 
 
 

Oxyrrhis marina 
(0-60min) 

 
Ambient 

A    𝑦 = 0.0256𝑥 + 0.26003 0.9816  
0.026 ±  
0.004 

B 𝑦 = 0.0258𝑥 + 0.4173 0.9715 

C 𝑦 = 0.0264𝑥 + 0.4853 0.9541 

 
Moderate 

A 𝑦 = 0.0306𝑥 + 0.4963 0.9607  
0.031 ± 
0.001 

B 𝑦 = 0.0315𝑥 + 0.5473 0.9479 

C 𝑦 = 0.0322𝑥 + 0.5383 0.9439 

 
High 

A 𝑦 = 0.0322𝑥 + 0.5373 0.9350  
0.029 ± 
0.003 

B 𝑦 = 0.0265𝑥 + 0.7413 0.8110 

C 𝑦 = 0.0278𝑥 + 0.6472 0.8697 
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Figure B1. Total cells of Rhodomonas sp. (average ± SD, n=3) ingested by Oxyrrhis marina in pCO2 

treatments ambient, moderate, high  at time points 30, 60, 90 and 120 minutes during a short term 

ingestion rate experiment. Isochrysis galbana was used as prey in the optimal diet treatment.  
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Figure B2. Total cells of Rhodomonas sp. (average ± SD, n=3) ingested by G. dominans in pCO2 

treatments ambient, moderate and high at time points 15, 45 and 90 minutes during a short term 

ingestion rate experiment.  
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Figure B3. Total cells of Rhodomonas sp. (average ± SD, n=3)ingested by F. ehrenbergii in pCO2 

treatments ambient, moderate and high at time points 15, 30 and 45 minutes during a short term 

ingestion rate experiment. Heterocapsa triquetra was used as prey in the optimal diet treatment.  
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Figure B4. Total cells of Rhodomonas sp. (average ± SD, n=3) ingested by Coxliella sp. in pCO2 

treatments ambient, moderate and high at time points 15, 30 and 45 minutes during a short term 

ingestion rate experiment.  
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information in certain cases.  Therefore, I also found individual microzooplankton ingestion 

rates between each sample time point by calculating the slope of the line relating cells 

ingested and time elapsed.  The pCO2 treatment effect on microzooplankton ingestion rates 

is particularly evident at the first time point for all grazers, with the exception of Coxliella 

sp. (Figures B5, B6, B7, and B8).  The results from one way ANOVA revealed the ingestion 

rate for the first sample time point was significantly affected by pCO2 for G. dominans 

(F(2,6)=32.156, p=0.001), F. ehrenbergii (F(2,6)=643.236, p<0.0001) and O. marina (F(2,6)=6.048, 

p=0.036).  G. dominans consumed moderate and high pCO2 Rhodomonas sp. significantly 

faster than ambient pCO2 Rhodomonas sp. after 15 minutes of feeding (Tukey’s post hoc: 

ambient vs. moderate p=0.005, ambient vs. high p=0.001).  A stepwise increase in F. 

ehrenbergii ingestion rate of ambient, moderate and high pCO2 Rhodomonas sp. occurred 

after 15 minutes of feeding (Tukey’s post hoc comparison: ambient vs. moderate p<0.0001, 

ambient vs. high p<0.0001 and moderate vs high p=0.001).  Finally, O. marina fed on 

Rhodomonas cultured in high pCO2 at a significantly faster rate than Rhodomonas sp. 

cultured in moderate and ambient pCO2 (Tukey’s post hoc comparison: ambient vs. 

moderate p=0.113, ambient vs. high p=0.035).  No pCO2 effect on Coxliella sp. ingestion of 

Rhodomonas sp. was found after 15 minutes of feeding (Figure B8, ANOVA, F(2,6)=1.50, 

p=0.296). 

Trends in the microzooplankton ingestion rate of Rhodomonas sp. after the first 

initial sample time differed between microzooplankton species (Figures B5, B6, B7 and B8). 

But, for all microzooplankton species, ingestion rates decreased after the first sample time 

point.  For O. marina initial ingestion rates were 0.054 ± 0.006, 0.049 ± 0.003, and 0.037 ± 
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0.008 cells grazer-1 min-1 of high, moderate and ambient Rhodomonas sp., respectively.  At 

60 minutes, no significant pCO2 treatment effect on O. marina ingestion rates was found 

and rates decreased to 0.026 ± 0.010, 0.0280 ± 0.004, and 0.016 ± 0.0008 cells grazer-1 min-1 

for high, moderate and ambient pCO2 Rhodomonas sp. (a  52, 43 and 57% decrease, 

respectively).  After 60 minutes, at sample time 90 minutes O. marina ingested high pCO2 

Rhodomonas sp. significantly faster than ambient pCO2 Rhodomonas sp. (ANOVA, 

F(2,6)=17.244, p=0.003; Tukey’s post hoc: ambient vs. high p=0.003).  No pCO2 treatment 

effect on O. marina ingestion of Rhodomonas sp. was found after 90 minutes of grazing.  

For G. dominans, initial ingestion rates were 0.17 ± 0.014, 0.15 ± 0.003 and 0.1 ± 0.009 cells 

grazer-1 min-1 of high, moderate and ambient pCO2 Rhodomonas sp., respectively.  Again, 

there was a decline in the rate of ingestion by G. dominans on Rhodomonas sp. at sampling 

point 45 minutes to 0.058 ± 0.007, 0.044 ± 0.004 and 0.047 ± 0.011 cells grazer-1 min-1 in 

high, moderate and ambient treatments (a 66, 71 and 56% decrease, respectively).  No 

significant pCO2 effect on the ingestion rate of Rhodomonas sp. existed at sample times 

after 15 minutes for G. dominans.  A significant pCO2 effect on the ingestion rate of 

Rhodomonas sp. prevailed at each sampling time point for F. ehrenbergii (Figure B7).  After 

F. ehrenbergii fed on Rhodomonas sp. for 15 minutes ingestion rates were 0.5 ± 0.007, 0.47 

± 0.004 and 0.32 ± 0.008  in high, moderate and ambient pCO2 treatments (ANOVA, F(2,6) 

643.236, p<0.0001; Tukey’s post hoc: ambient vs. moderate p<0.0001, ambient vs. high 

p<0.0001, moderate vs. high p=0.001).  Between sampling points 15 and 30 minutes F. 

ehrenbergii ingestion rates declined to 0.22 ± 0.02, 0.16 ± 0.01 and 0.23 ± 0.03 in high,  
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Figure B5. Short term ingestion rate of Oxyrrhis marina (average ± SD, n=3) (cells grazer-1 min-1) 

feeding on Rhodomonas sp. cultured semi-continuously in pCO2 treatments ambient moderate and 

high at time points 30, 60, 90 and 120 minutes. Isochrysis galbana was used as prey in the optimal 

diet treatment. The ingestion rate is the slope of the line relating cells ingested since last time point 

per minute. The letters A and B on the graph indicate Tukey’s post hoc significance (p<0.05) at all 

sample time points. 
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Figure B6. Short term ingestion rate of Gyrodinium dominans (average ± SD, n=3)  feeding on 

Rhodomonas sp. cultured semi-continuously in pCO2 treatments ambient moderate and high at time 

points 15, 45 and 90 minutes. See Fig. B5 for how the ingestion rate is found. The letters A, and B on 

the graph indicate Tukey’s post hoc significance when applicable at all sample time points.  
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Figure B7.  Short term ingestion rate of Favella ehrenbergii (average ± SD, n=3) (cells grazer-1 min-1) 

feeding on Rhodomonas sp. cultured semi-continuously in pCO2 treatments ambient moderate and 

high at time points 15,  30 and 45 minutes. Heterocapsa triquetra was used as prey in the optimal 

diet treatment. See Fig. B5 for how the ingestion rate is found. The letters A, B, and C on the graph 

indicate Tukey’s post hoc significance (p<0.05) at all time points. 
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Figure B8. Short term ingestion rate of Coxliella sp. (average ± SD, n=3) feeding on Rhodomonas sp. 

cultured semi-continuously in pCO2 treatments ambient moderate and high at time points 15,  30 

and 45 minutes. See Fig. B5 for how the ingestion rate is found. 
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moderate and ambient pCO2 treatments (a 56, 66 and 28% decrease, respectively).  But F. 

ehrenbergii ingestion rates increased to 0.38 ± 0.01, 0.34 ± 0.01 and 0.29 ± 0.03 in high, 

moderate and ambient pCO2 treatments after another 15 minutes passed at sampling point 

45 minutes. F. ehrenbergii ingested Rhodomonas sp. cultured in moderate pCO2 faster than 

ambient and high pCO2 Rhodomonas sp. between the 15 and 30 minute sampling period 

(ANOVA, F(2,6)=11.802, p=0.008; Tukey’s post hoc: ambient vs. moderate p=0.010, moderate 

vs. high p=0.021).  Between 30 and 45 sample times, F. ehrenbergii ingested moderate and 

high pCO2 Rhodomonas sp. significantly faster than ambient pCO2 Rhodomonas sp. (ANOVA, 

F(2,6)=13.893, p=0.003; Tukey’s post hoc: ambient vs. moderate p=0.029, ambient vs. high 

p=0.002). 

Population of microzooplankton 

Thus far, the data presented from ST ingestion rate experiments includes cells 

counts from all 100 microzooplankton food vacuoles encountered haphazardly.  This 

includes any microzooplankton encountered with no ingested Rhodomonas sp. cells.  In the 

case of empty microzooplankton food vacuoles, a zero was used and included in the 

calculation for average ingested cells by the microzooplankton at that time point.  However, 

it is also valid to look at the data that only include microzooplankton that are actively 

feeding.  Doing this provides additional information about the indirect effect elevated pCO2 

has on the ingestion of microzooplankton.  When removing the microzooplankton not 

feeding from the data the overall patterns and trends of the results were the same.  
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Optimal Diet 

On average O. marina ingested 2.04 ± 0.5, 2.44 ± 0.7, 3.28 ± 0.5 and 4.01 ± 0.6 cells 

of I. galbana at sample time points 30, 60, 90 and 120 minutes, respectively (Figure B1).  

Rhodomonas sp. cell biovolume (ambient: 144.6µm3; moderate: 211.4 µm3 and high: 260.6 

µm3) was larger than I. galbana (56 µm3, Hansen et al. 1996).  Therefore, even though it 

appears O. marina ingested a similar number of total prey cells in the optimal diet 

treatment for each sample time point, O. marina ingested less prey bio-volume in the 

optimal diet treatment.  Average O. marina ingestion rates calculated from the slope of the 

lines relating I. galbana cells ingested and time elapsed were 0.059 ± 0.02, 0.013 ± 0.008, 

0.028 ± 0.005 and 0.025 ± 0.004 cells grazer-1 min-1 for the 0-30, 30-60, 60-90 and 90-120 

minutes sample time intervals, respectively (Figure B5).  To compare pCO2 treatments to 

the optimal diet treatment prey ingested by O. marina was converted to biomass in pg C 

(Figure B13 and B14).  On average, O. marina ingested less pg C of prey in the optimal diet 

treatment at each sample time point in comparison to ambient, moderate and high pCO2 

treatments (Figure B13) (30 minutes: ANOVA, F(3,8)=121.891, p<0.0001; Tukey’s post hoc 

hoc: optimal diet vs. ambient; moderate; high p<0.0001 ; 60 minutes: ANOVA, 

F(3,8)=191.982, p<0.0001; Tukey’s post hoc: optimal vs. ambient; moderate; high p<0.0001; 

90 minutes: ANOVA, F(3,8)=257.442, p<0.0001; Tukey’s post hoc: optimal diet vs. ambient; 

moderate; high p<0.0001; 120 minutes: ANOVA, F(3,8)=225.998, p<0.0001; Tukey’s post hoc: 

optimal diet vs. ambient; moderate; high p<0.0001).  

 On average, F. ehrenbergii ingested 2.43 ± 0.29, 5.02 ± 0.19 and 5.60 ± 0.41 cells of 

H. triquetra after 15, 30 and 45 minutes of grazing, respectively (Figure B3).  Cell bio-volume 



 

133 
 

of H. triquetra (~4179µm3, Olenina et al. 2006) is much larger than Rhodomonas sp. 

(ambient: 137.3µm3; moderate: 170.9 µm3 and high: 219.4 µm3).  Therefore, although F. 

ehrenbergii, ingested fewer cells of H. triquetra at each sample time the microzooplankton 

actually ingested more total bio-volume of prey in the optimal diet treatment.  Average F. 

ehrenbergii ingestion rates calculated from the slope of the lines relating H. triquetra cells 

ingested and time elapsed for each replicate were 0.15 ± 0.02, 0.17 ± 0.03 and 0.04 ± 0.03 

cells grazer-1 min-1 for the 0-15, 15-30 and 30-45 minutes sample time intervals, respectively 

(Figure B7).  To compare pCO2 treatments to the optimal diet, treatment prey ingested by F. 

ehrenbergii was converted to biomass in pg C (Figure B15 and B16).  On average, F. 

ehrenbergii ingested more pg C in the optimal diet treatment at each sample time point in 

comparison to ambient, moderate and high pCO2 treatments (Figure B15) (15 minutes: 

ANOVA, F(3,8)=237.85, p<0.0001; Tukey’s post hoc hoc: optimal diet vs. ambient; moderate; 

high p<0.0001 ; 30 minutes: ANOVA, F(3,8)=176.09, p<0.0001; Tukey’s post hoc: optimal vs. 

ambient; moderate; high p<0.0001; 45 minutes: ANOVA, F(3,8)=503.282, p<0.0001; Tukey’s 

post hoc: optimal diet vs. ambient; moderate; high p<0.0001).  Similarly, F. ehernbergii 

ingestion rate (pg C grazer-1 min-1) was significantly higher in the optimal diet treatment in 

comparison to ambient, moderate and high pCO2 treatments at sample times 0-15 and 15-

30 minutes (Figure B16) (15 minutes: ANOVA, F(3,8)=198.218, p<0.0001; Tukey’s post hoc 

hoc: optimal diet vs. ambient; moderate; high p<0.0001 ; 30 minutes: ANOVA, F(3,8)=62.858, 

p<0.0001; Tukey’s post hoc: optimal vs. ambient; moderate; high p<0.0001).  After 45 

minutes of feeding, F. ehrenbergii ingestion rate (pg C grazer-1 min-1) is not significantly 

different in any treatment.  
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Figure B13. Total pg C of Rhodomonas sp. (average ± SD, n=3) ingested by Oxyrrhis marina in pCO2 

treatments ambient, moderate, high  at time points 30, 60, 90 and 120 minutes during a short term 

ingestion rate experiment. Isochrysis galbana was used as prey in the optimal diet treatment  
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Figure B14. Short term ingestion rate of Oxyrrhis marina (average ± SD, n=3) (pg C grazer-1 min-1) 

feeding on Rhodomonas sp. cultured semi-continuously in pCO2 treatments ambient moderate and 

high at time points 30, 60, 90 and 120 minutes. Isochrysis galbana was used as prey in the optimal 

diet treatment. The ingestion rate is the slope of the line relating cells ingested and time between 

each sample time point.  
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Figure B15. Total pg C of Rhodomonas sp. (average ± SD, n=3)ingested by F. ehrenbergii in pCO2 

treatments ambient, moderate and high at time points 15, 30 and 45 minutes during a short term 

ingestion rate experiment. Heterocapsa triquetra was used as prey in the optimal diet treatment.  
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Figure B16.  Short term ingestion rate of Favella ehrenbergii (average ± SD, n=3) (pg C grazer-1 min-1) 

feeding on Rhodomonas sp. cultured semi-continuously in pCO2 treatments ambient moderate and 

high at time points 15,  30 and 45 minutes. Heterocapsa triquetra was used as prey in the optimal 

diet treatment.  
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