Density of coral settlers detected on settlement tiles each year at two 10m sites on the north shore of Moorea, French Polynesia from 2008 to 2020

Website: https://www.bco-dmo.org/dataset/918324
Data Type: Other Field Results
Version: 1
Version Date: 2024-01-23

Project
» Moorea Coral Reef Long-Term Ecological Research site (MCR LTER)

Program
» Long Term Ecological Research network (LTER)
ContributorsAffiliationRole
Edmunds, Peter J.California State University Northridge (CSUN)Principal Investigator
Burgess, ScottFlorida State University (FSU)Scientist
Maritorena, StephaneUniversity of California-Santa Barbara (UCSB-ERI)Scientist
York, Amber D.Woods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager

Abstract
Data Abstract: These data describe the number of coral settlers detected on settlement tiles each year, with annual settlement determined by adding mean recruits on tiles retrieved in Jan/Feb to mean density on tiles retrieved Aug/Sept. Results paper abstract, Edmunds et al. (2024, doi:10.1007/s00442-024-05517-y) : * [See "Related Datasets" section for access to related datasets discussed here] Understanding population dynamics is a long-standing objective of ecology, but the need for progress in this area has become urgent. For coral reefs, achieving this objective is impeded by a lack of information on settlement versus post-settlement events in determining recruitment and population size. Declines in coral abundance are often inferred to be associated with reduced densities of recruits, which could arise from mechanisms occurring at larval settlement, or throughout post-settlement stages. This study uses annual measurements from 2008 to 2021 of coral cover, the density of coral settlers (S), the density of small corals (SC), and environmental conditions, to evaluate the roles of settlement versus post-settlement events in determining rates of coral recruitment and changes in coral cover at Moorea, French Polynesia. Coral cover, S, SC, and the SC:S ratio (a proxy for post-settlement success), and environmental conditions, were used in generalized additive models (GAMs) to show that: (a) coral cover was more strongly related to SC and SC:S than S, and (b) SC:S was highest when preceded by cool seawater, low concentrations of Chlorophyll a, and low flow speeds, and S showed evidence of declining with elevated temperature. Together, these results suggest that changes in coral cover in Moorea are more strongly influenced by post-settlement events than settlement. The key to understanding coral community resilience may lie in elucidating the factors attenuating the bottleneck between settlers and small corals.


Coverage

Location: Moorea, French Polynesia
Spatial Extent: N:-17.475083 E:-149.8101 S:-17.4819 W:-149.84833
Temporal Extent: 2008 - 2020

Methods & Sampling

The ecological methods are described in detail in Edmunds et al. (2024, doi:10.1007/s00442-024-05517-y), and are briefly summarized below. 

The study utilized the time series of the Moorea Coral Reef LTER, as they relate to coral community dynamics on the north shore fore reef. Annual measurements of coral cover, the density of coral settlers, and the density of small corals were used together with records of the environmental conditions to which they were exposed. Analyses focused on 2008–2021, which captured the final years of the last population outbreak of the crown of thorns (COTs) sea star, the coral population recovery that took place between 2010 and 2019, and coral mortality attributed to bleaching in 2019. Biological data came from two sites (LTER1 and LTER2) that are ~ 3 km apart, with environmental data from the same or similar sites (temperature), one of the two sites (flow at LTER1), or from 4.5 km resolution remote sensing data (Chlorophyll a as described below).

Coral cover was measured annually (April except for 2020 [August] and 2021 [May]) at 10-m depth along a 50 m, permanently marked transect at LTER 1 and LTER 2. Along each transect, 40 photoquadrats (0.5 × 0.5 m) were photographed at positions that were randomly selected in 2005, but fixed thereafter. Pictures were illuminated with strobes, and analyzed using CPCe or CoralNET software with manual annotation of 200 randomly located points on each image. Substrata beneath the points were categorized to coral genus, and the percentage cover for all corals (scleractinians and Millepora) and Pocillopora spp., is reported. The changes in cover of corals (scleractinians and Millepora) provided a holistic summary of the coral community consistent with how we have described it elsewhere and how it is described in the broader scientific literature on coral reefs. The separate summary for Pocillopora spp. provided a measure of coral cover that is the product of the most abundant coral settlers found on tiles deployed in the same habitat (i.e., pocilloporids). The density of small corals (≤ 4-cm diameter) was quantified in the field annually, shortly after the photoquadrats were recorded (but not in 2020 due to COVID-19), and was completed using quadrats (0.5 × 0.5 m) placed in the same positions as the photoquadrats. The benthos, including beneath branching corals, was inspected for small corals that were recorded to genus, and the densities of all corals and Pocillopora spp. are reported in units of corals 0.25 m-2.

The density of coral settlers was measured using unglazed terracotta tiles (15 × 15 × 1 cm), seasoned (~ 6 months) in seawater beneath the marine laboratory dock, and then immersed on the reef at 10 m depth for ~ 6 months. Tiles were deployed from August/September to January/February and from January/February to August/September of each year at LTER1 and LTER2. Each tile was deployed independently and horizontally using a stainless steel stud with a ~ 1 cm gap beneath. Fifteen tiles were deployed at 10 m depth at each site, with tiles separated by a few centimeters to ~ 1 m. Upon retrieval, tiles were cleaned in dilute bleach, dried, and microscopically inspected (40 x magnification) for coral recruits that were identified to family. The top, bottom, and sides of the tiles were inspected, and densities of settlers for all corals and pocilloporids are reported. Because ~ 82% of the settlers was found on the lower surface of the tiles, densities (summed among surfaces) were expressed per 225 cm2 of tile (i.e., the lower surface) and scaled linearly to settlers 0.25 m-2. This assumption resulted in a slight upwardly-biased estimate in the density of recruits (versus a downwardly-biased estimate through consideration of the upper and lower surface at 450 cm2), but it did not affect interpretation of settlement tiles as an assay for the density of settling corals. For each site, mean densities from both tile immersions each year were summed to estimate annual settlement.

* See "Related Datasets" section for access to related dataset pages which include dataset-specific methodology.


BCO-DMO Processing Description

* Sheet "Data" of file "Settler_Density.xlsx" was imported into the BCO-DMO data system with values "nd" as missing data values. 
** Missing data values are displayed differently based on the file format you download.  They are blank in csv files, "NaN" in MatLab files, etc.
* Column names adjusted to conform to BCO-DMO naming conventions designed to support broad re-use by a variety of research tools and scripting languages. [Only numbers, letters, and underscores.  Can not start with a number]
* dataset references to results publication Edmunds et al 2023 changed to 2024 since that was the year associated with the DOI after final publication. Edmunds et al. (2024, doi:10.1007/s00442-024-05517-y)


[ table of contents | back to top ]

Data Files

File
918324_v1_settler-density.csv
(Comma Separated Values (.csv), 633 bytes)
MD5:c7bc2cefa0af2c5e5ea7941549399bf4
Primary data file for dataset ID 918324, version 1

[ table of contents | back to top ]

Supplemental Files

File
Site list
filename: site_locations.csv
(Comma Separated Values (.csv), 215 bytes)
MD5:d13ffaef5e5725529594f401de6a97cc
Site location list in Moorea (LTER0,LTER1,LTER2) for datasets related to Edmunds et al. (2024, doi:10.1007/s00442-024-05517-y) and Edmunds et al. (2020, doi:10.1093/icesjms/fsaa015).

Columns:
location, geolocation name
site, site identifier
lat_dd, site latitude, decimal degrees
lon_dd, site longitude, decimal degrees
lat_deg_decmin, site latitude, degrees decimal minutes
lon_deg_decmin, site longitude, degrees decimal minutes

[ table of contents | back to top ]

Related Publications

Edmunds, P. J., Maritorena, S., & Burgess, S. C. (2024). Early post-settlement events, rather than settlement, drive recruitment and coral recovery at Moorea, French Polynesia. Oecologia, 204(3), 625–640. https://doi.org/10.1007/s00442-024-05517-y
Results

[ table of contents | back to top ]

Related Datasets

IsRelatedTo
Edmunds, P. J., Burgess, S., Maritorena, S. (2024) Benthic seawater temperature at 10m depth in Moorea, French Polynesia from 2005 to 2021. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2024-01-23 doi:10.26008/1912/bco-dmo.918318.1 [view at BCO-DMO]
Relationship Description: Datasets in support of results publication Edmunds et al. (2023).
Edmunds, P. J., Burgess, S., Maritorena, S. (2024) Density of small corals at two 10m sites on the north shore of Moorea, French Polynesia from 2005 to 2021. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2024-01-23 http://lod.bco-dmo.org/id/dataset/918330 [view at BCO-DMO]
Relationship Description: Datasets in support of results publication Edmunds et al. (2023).
Edmunds, P. J., Burgess, S., Maritorena, S. (2024) Flow speed on the north shore of Moorea, French from 2007 to 2021. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2024-01-23 doi:10.26008/1912/bco-dmo.918306.1 [view at BCO-DMO]
Relationship Description: Datasets in support of results publication Edmunds et al. (2023).
Edmunds, P. J., Burgess, S., Maritorena, S. (2024) Percentage cover of the benthos by live coral at 10 m depth at sites in Moorea Moorea, French Polynesia from 2008 to 2021. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2024-01-23 doi:10.26008/1912/bco-dmo.918265.1 [view at BCO-DMO]
Relationship Description: Datasets in support of results publication Edmunds et al. (2023).
Edmunds, P. J., Burgess, S., Maritorena, S. (2024) Seawater chlorophyll concentration offshore from Moorea, French Polynesia from 2008 to 2020. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2024-01-23 doi:10.26008/1912/bco-dmo.918299.1 [view at BCO-DMO]
Relationship Description: Datasets in support of results publication Edmunds et al. (2023).
Edmunds, P. J., Burgess, S., Maritorena, S. (2024) Seawater clarity in Moorea, French Polynesia from 2003 to 2022. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2024-01-23 doi:10.26008/1912/bco-dmo.918312.1 [view at BCO-DMO]
Relationship Description: Datasets in support of results publication Edmunds et al. (2023).
IsDerivedFrom
Moorea Coral Reef LTER, & Edmunds, P. (2018). MCR LTER: Coral Reef: Community Dynamics: Juvenile Coral Density from 2005, ongoing [Data set]. Environmental Data Initiative. https://doi.org/10.6073/PASTA/15702B63DFD3E0EB0A463366C512DAB4 (Accessed 2024-02-21). https://doi.org/10.6073/pasta/15702b63dfd3e0eb0a463366c512dab4

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
YearYear of analysis unitless
SiteLocation where tiles were submerged, either LTER1 or LTER2 unitless
All_coralsNumber of settlers for all taxa combined. number of settlers per tile
PocilloporaNumber of Pocilloporidae settlers. number of settlers per tile


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
Generic Instrument Name
Underwater Camera
Generic Instrument Description
All types of photographic equipment that may be deployed underwater including stills, video, film and digital systems.


[ table of contents | back to top ]

Project Information

Moorea Coral Reef Long-Term Ecological Research site (MCR LTER)


Coverage: Island of Moorea, French Polynesia


From http://www.lternet.edu/sites/mcr/ and http://mcr.lternet.edu/:
The Moorea Coral Reef LTER site encompasses the coral reef complex that surrounds the island of Moorea, French Polynesia (17°30'S, 149°50'W). Moorea is a small, triangular volcanic island 20 km west of Tahiti in the Society Islands of French Polynesia. An offshore barrier reef forms a system of shallow (mean depth ~ 5-7 m), narrow (~0.8-1.5 km wide) lagoons around the 60 km perimeter of Moorea. All major coral reef types (e.g., fringing reef, lagoon patch reefs, back reef, barrier reef and fore reef) are present and accessible by small boat.

The MCR LTER was established in 2004 by the US National Science Foundation (NSF) and is a partnership between the University of California Santa Barbara and California State University, Northridge. MCR researchers include marine scientists from the UC Santa Barbara, CSU Northridge, UC Davis, UC Santa Cruz, UC San Diego, CSU San Marcos, Duke University and the University of Hawaii. Field operations are conducted from the UC Berkeley Richard B. Gump South Pacific Research Station on the island of Moorea, French Polynesia.

MCR LTER Data: The Moorea Coral Reef (MCR) LTER data are managed by and available directly from the MCR project data site URL shown above.  The datasets listed below were collected at or near the MCR LTER sampling locations, and funded by NSF OCE as ancillary projects related to the MCR LTER core research themes.

This project is supported by continuing grants with slight name variations:
LTER: Long-Term Dynamics of a Coral Reef Ecosystem
LTER: MCR II - Long-Term Dynamics of a Coral Reef Ecosystem
LTER: MCR IIB: Long-Term Dynamics of a Coral Reef Ecosystem
LTER: MCR III: Long-Term Dynamics of a Coral Reef Ecosystem
LTER: MCR IV: Long-Term Dynamics of a Coral Reef Ecosystem



[ table of contents | back to top ]

Program Information

Long Term Ecological Research network (LTER)


Coverage: United States


adapted from http://www.lternet.edu/

The National Science Foundation established the LTER program in 1980 to support research on long-term ecological phenomena in the United States. The Long Term Ecological Research (LTER) Network is a collaborative effort involving more than 1800 scientists and students investigating ecological processes over long temporal and broad spatial scales. The LTER Network promotes synthesis and comparative research across sites and ecosystems and among other related national and international research programs. The LTER research sites represent diverse ecosystems with emphasis on different research themes, and cross-site communication, network publications, and research-planning activities are coordinated through the LTER Network Office.

LTER site location map

2017 LTER research site map obtained from https://lternet.edu/site/lter-network/



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]