S-CAN and geochemical data for Groves Creek from 2013-10-16 to 2015-02-26

Website: https://www.bco-dmo.org/dataset/753816
Data Type: Other Field Results, experimental
Version: 1
Version Date: 2019-02-20

Project
» Collaborative Research: Marine priming effect - molecular mechanisms for the biomineralization of terrigenous dissolved organic matter in the ocean (Marine priming effect)
ContributorsAffiliationRole
Stubbins, AronSkidaway Institute of Oceanography (SkIO)Principal Investigator
Spencer, RobertFlorida State University (FSU)Co-Principal Investigator
Biddle, MathewWoods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager


Coverage

Spatial Extent: Lat:31.97139 Lon:-80.972472
Temporal Extent: 2013-10-16 - 2015-02-26

Dataset Description

S-CAN and geochemical data for Groves Creek


Methods & Sampling

In situ instruments deployed at 1 m depth below the surface and as per: Tait, Z. S., M. Thompson, and A. Stubbins (2015) Chemical fouling reduction of a submersible steel spectrophotometer in estuarine environments using a sacrificial zinc anode. Journal of Environmental Quality. doi: 10.2134/jeq2014.11.0484

Samples for laboratory analyses were collected using a refrigerated autosampler (ISCO) which pumped samples from a depth of 1 m below the water surface. Samples were returned to the laboratory and filtered through 0.2 micron Polycap filters within 24 hours of collection. 

DOC and TDN using a Shimadzu TOC/TDN analyzer as per automated setup in Stubbins, A., and Dittmar, T. (2012) Low volume quantification of dissolved organic carbon and dissolved nitrogen. Limnology and Oceanography: Methods. doi: 10.4319/lom.2012.10.347.

Lignin via cupric oxide oxidation and GC-MS as per: Spencer, R.G.M., Hernes, P.J., Ruf, R., Baker, A., Dyda, R.Y., Stubbins, A., and Six, J. (2010) Temporal controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river. Journal of Geophysical Research – Biogeosciences. doi:10.1029/2009JG001180.

Dissolved black carbon by nitric acid oxidation to BPCAs followed by HPLC with spectrophotometric detection as per the non-isotopic method in Wagner, S., Brandes, J., Goranov, A.I., Drake, T. W., Spencer, R. G. W., Stubbins, A. (2017) Online quantification and compound-specific stable isotopic analysis of black carbon in environmental matrices via liquid chromatography-isotope ratio mass spectrometry. Limnology and Oceanography: Methods. doi: 10.1002/lom3.10219.
Nutrients were analyzed using a nutrient analyzer as per: Bittar, T. B., S. A. Berger, L. M. Birsa, T. L. Walters, M. E. Thompson, R. G. M. Spencer, E. L. Mann, A. Stubbins, M. E. Frischer, and J. A. Brandes (2016) Seasonal dynamics of dissolved, particulate and microbial components of a tidal saltmarsh-dominated estuary under contrasting levels of freshwater discharge. Estuarine, Coastal and Shelf Science. doi: 10.1016/j.ecss.2016.08.046.


Data Processing Description

BCO-DMO Processing Notes:

- combined two data tables into one data table with the same field identifiers.
- added conventional header with dataset name, PI name, version date
- modified parameter names to conform with BCO-DMO naming conventions
- added lat and lon columns
- added date_time column
- added depth column
- removed columns SCAN1,2,3 as the column SCAN_no contains the same information

 


[ table of contents | back to top ]

Data Files

File
light_atten.csv
(Comma Separated Values (.csv), 60.90 MB)
MD5:66f04f46b5ec28a60d14e25bd43ec764
Primary data file for dataset ID 753816

[ table of contents | back to top ]

Related Publications

Bittar, T. B., Berger, S. A., Birsa, L. M., Walters, T. L., Thompson, M. E., Spencer, R. G. M., … Brandes, J. A. (2016). Seasonal dynamics of dissolved, particulate and microbial components of a tidal saltmarsh-dominated estuary under contrasting levels of freshwater discharge. Estuarine, Coastal and Shelf Science, 182, 72–85. doi:10.1016/j.ecss.2016.08.046
Methods
Spencer, R. G. M., Hernes, P. J., Ruf, R., Baker, A., Dyda, R. Y., Stubbins, A., & Six, J. (2010). Temporal controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo. Journal of Geophysical Research, 115(G3). doi:10.1029/2009jg001180 https://doi.org/10.1029/2009JG001180
Methods
Stubbins, A., & Dittmar, T. (2012). Low volume quantification of dissolved organic carbon and dissolved nitrogen. Limnology and Oceanography: Methods, 10(5), 347–352. doi:10.4319/lom.2012.10.347
Methods
Tait, Z. S., Thompson, M., & Stubbins, A. (2015). Chemical Fouling Reduction of a Submersible Steel Spectrophotometer in Estuarine Environments Using a Sacrificial Zinc Anode. Journal of Environment Quality, 44(4), 1321. doi:10.2134/jeq2014.11.0484
Methods
Wagner, S., Brandes, J., Goranov, A. I., Drake, T. W., Spencer, R. G. M., & Stubbins, A. (2017). Online quantification and compound-specific stable isotopic analysis of black carbon in environmental matrices via liquid chromatography-isotope ratio mass spectrometry. Limnology and Oceanography: Methods, 15(12), 995–1006. doi:10.1002/lom3.10219
Methods

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
SCAN_nospectrophotometer number unitless
Excel_Timevalue that Microsoft Excel recognizes as a date unitless
date_timedate and time formatted as a string following YYYY-MM-DD HH:MM unitless
ISCO_deployment_nodeployment number unitless
nm220light attenuation at 220 nanometers per meter
nm222_5light attenuation at 222.5 nanometers per meter
nm225light attenuation at 225 nanometers per meter
nm227_5light attenuation at 227.5 nanometers per meter
nm230light attenuation at 230 nanometers per meter
nm232_5light attenuation at 232.5 nanometers per meter
nm235light attenuation at 235 nanometers per meter
nm237_5light attenuation at 237.5 nanometers per meter
nm240light attenuation at 240 nanometers per meter
nm242_5light attenuation at 242.5 nanometers per meter
nm245light attenuation at 245 nanometers per meter
nm247_5light attenuation at 247.5 nanometers per meter
nm250light attenuation at 250 nanometers per meter
nm252_5light attenuation at 252.5 nanometers per meter
nm255light attenuation at 255 nanometers per meter
nm257_5light attenuation at 257.5 nanometers per meter
nm260light attenuation at 260 nanometers per meter
nm262_5light attenuation at 262.5 nanometers per meter
nm265light attenuation at 265 nanometers per meter
nm267_5light attenuation at 267.5 nanometers per meter
nm270light attenuation at 270 nanometers per meter
nm272_5light attenuation at 272.5 nanometers per meter
nm275light attenuation at 275 nanometers per meter
nm277_5light attenuation at 277.5 nanometers per meter
nm280light attenuation at 280 nanometers per meter
nm282_5light attenuation at 282.5 nanometers per meter
nm285light attenuation at 285 nanometers per meter
nm287_5light attenuation at 287.5 nanometers per meter
nm290light attenuation at 290 nanometers per meter
nm292_5light attenuation at 292.5 nanometers per meter
nm295light attenuation at 295 nanometers per meter
nm297_5light attenuation at 297.5 nanometers per meter
nm300light attenuation at 300 nanometers per meter
nm302_5light attenuation at 302.5 nanometers per meter
nm305light attenuation at 305 nanometers per meter
nm307_5light attenuation at 307.5 nanometers per meter
nm310light attenuation at 310 nanometers per meter
nm312_5light attenuation at 312.5 nanometers per meter
nm315light attenuation at 315 nanometers per meter
nm317_5light attenuation at 317.5 nanometers per meter
nm320light attenuation at 320 nanometers per meter
nm322_5light attenuation at 322.5 nanometers per meter
nm325light attenuation at 325 nanometers per meter
nm327_5light attenuation at 327.5 nanometers per meter
nm330light attenuation at 330 nanometers per meter
nm332_5light attenuation at 332.5 nanometers per meter
nm335light attenuation at 335 nanometers per meter
nm337_5light attenuation at 337.5 nanometers per meter
nm340light attenuation at 340 nanometers per meter
nm342_5light attenuation at 342.5 nanometers per meter
nm345light attenuation at 345 nanometers per meter
nm347_5light attenuation at 347.5 nanometers per meter
nm350light attenuation at 350 nanometers per meter
nm352_5light attenuation at 352.5 nanometers per meter
nm355light attenuation at 355 nanometers per meter
nm357_5light attenuation at 357.5 nanometers per meter
nm360light attenuation at 360 nanometers per meter
nm362_5light attenuation at 362.5 nanometers per meter
nm365light attenuation at 365 nanometers per meter
nm367_5light attenuation at 367.5 nanometers per meter
nm370light attenuation at 370 nanometers per meter
nm372_5light attenuation at 372.5 nanometers per meter
nm375light attenuation at 375 nanometers per meter
nm377_5light attenuation at 377.5 nanometers per meter
nm380light attenuation at 380 nanometers per meter
nm382_5light attenuation at 382.5 nanometers per meter
nm385light attenuation at 385 nanometers per meter
nm387_5light attenuation at 387.5 nanometers per meter
nm390light attenuation at 390 nanometers per meter
nm392_5light attenuation at 392.5 nanometers per meter
nm395light attenuation at 395 nanometers per meter
nm397_5light attenuation at 397.5 nanometers per meter
nm400light attenuation at 400 nanometers per meter
nm402_5light attenuation at 402.5 nanometers per meter
nm405light attenuation at 405 nanometers per meter
nm407_5light attenuation at 407.5 nanometers per meter
nm410light attenuation at 410 nanometers per meter
nm412_5light attenuation at 412.5 nanometers per meter
nm415light attenuation at 415 nanometers per meter
nm417_5light attenuation at 417.5 nanometers per meter
nm420light attenuation at 420 nanometers per meter
nm422_5light attenuation at 422.5 nanometers per meter
nm425light attenuation at 425 nanometers per meter
nm427_5light attenuation at 427.5 nanometers per meter
nm430light attenuation at 430 nanometers per meter
nm432_5light attenuation at 432.5 nanometers per meter
nm435light attenuation at 435 nanometers per meter
nm437_5light attenuation at 437.5 nanometers per meter
nm440light attenuation at 440 nanometers per meter
nm442_5light attenuation at 442.5 nanometers per meter
nm445light attenuation at 445 nanometers per meter
nm447_5light attenuation at 447.5 nanometers per meter
nm450light attenuation at 450 nanometers per meter
nm452_5light attenuation at 452.5 nanometers per meter
nm455light attenuation at 455 nanometers per meter
nm457_5light attenuation at 457.5 nanometers per meter
nm460light attenuation at 460 nanometers per meter
nm462_5light attenuation at 462.5 nanometers per meter
nm465light attenuation at 465 nanometers per meter
nm467_5light attenuation at 467.5 nanometers per meter
nm470light attenuation at 470 nanometers per meter
nm472_5light attenuation at 472.5 nanometers per meter
nm475light attenuation at 475 nanometers per meter
nm477_5light attenuation at 477.5 nanometers per meter
nm480light attenuation at 480 nanometers per meter
nm482_5light attenuation at 482.5 nanometers per meter
nm485light attenuation at 485 nanometers per meter
nm487_5light attenuation at 487.5 nanometers per meter
nm490light attenuation at 490 nanometers per meter
nm492_5light attenuation at 492.5 nanometers per meter
nm495light attenuation at 495 nanometers per meter
nm497_5light attenuation at 497.5 nanometers per meter
nm500light attenuation at 500 nanometers per meter
nm502_5light attenuation at 502.5 nanometers per meter
nm505light attenuation at 505 nanometers per meter
nm507_5light attenuation at 507.5 nanometers per meter
nm510light attenuation at 510 nanometers per meter
nm512_5light attenuation at 512.5 nanometers per meter
nm515light attenuation at 515 nanometers per meter
nm517_5light attenuation at 517.5 nanometers per meter
nm520light attenuation at 520 nanometers per meter
nm522_5light attenuation at 522.5 nanometers per meter
nm525light attenuation at 525 nanometers per meter
nm527_5light attenuation at 527.5 nanometers per meter
nm530light attenuation at 530 nanometers per meter
nm532_5light attenuation at 532.5 nanometers per meter
nm535light attenuation at 535 nanometers per meter
nm537_5light attenuation at 537.5 nanometers per meter
nm540light attenuation at 540 nanometers per meter
nm542_5light attenuation at 542.5 nanometers per meter
nm545light attenuation at 545 nanometers per meter
nm547_5light attenuation at 547.5 nanometers per meter
nm550light attenuation at 550 nanometers per meter
nm552_5light attenuation at 552.5 nanometers per meter
nm555light attenuation at 555 nanometers per meter
nm557_5light attenuation at 557.5 nanometers per meter
nm560light attenuation at 560 nanometers per meter
nm562_5light attenuation at 562.5 nanometers per meter
nm565light attenuation at 565 nanometers per meter
nm567_5light attenuation at 567.5 nanometers per meter
nm570light attenuation at 570 nanometers per meter
nm572_5light attenuation at 572.5 nanometers per meter
nm575light attenuation at 575 nanometers per meter
nm577_5light attenuation at 577.5 nanometers per meter
nm580light attenuation at 580 nanometers per meter
nm582_5light attenuation at 582.5 nanometers per meter
nm585light attenuation at 585 nanometers per meter
nm587_5light attenuation at 587.5 nanometers per meter
nm590light attenuation at 590 nanometers per meter
nm592_5light attenuation at 592.5 nanometers per meter
nm595light attenuation at 595 nanometers per meter
nm597_5light attenuation at 597.5 nanometers per meter
nm600light attenuation at 600 nanometers per meter
nm602_5light attenuation at 602.5 nanometers per meter
nm605light attenuation at 605 nanometers per meter
nm607_5light attenuation at 607.5 nanometers per meter
nm610light attenuation at 610 nanometers per meter
nm612_5light attenuation at 612.5 nanometers per meter
nm615light attenuation at 615 nanometers per meter
nm617_5light attenuation at 617.5 nanometers per meter
nm620light attenuation at 620 nanometers per meter
nm622_5light attenuation at 622.5 nanometers per meter
nm625light attenuation at 625 nanometers per meter
nm627_5light attenuation at 627.5 nanometers per meter
nm630light attenuation at 630 nanometers per meter
nm632_5light attenuation at 632.5 nanometers per meter
nm635light attenuation at 635 nanometers per meter
nm637_5light attenuation at 637.5 nanometers per meter
nm640light attenuation at 640 nanometers per meter
nm642_5light attenuation at 642.5 nanometers per meter
nm645light attenuation at 645 nanometers per meter
nm647_5light attenuation at 647.5 nanometers per meter
nm650light attenuation at 650 nanometers per meter
nm652_5light attenuation at 652.5 nanometers per meter
nm655light attenuation at 655 nanometers per meter
nm657_5light attenuation at 657.5 nanometers per meter
nm660light attenuation at 660 nanometers per meter
nm662_5light attenuation at 662.5 nanometers per meter
nm665light attenuation at 665 nanometers per meter
nm667_5light attenuation at 667.5 nanometers per meter
nm670light attenuation at 670 nanometers per meter
nm672_5light attenuation at 672.5 nanometers per meter
nm675light attenuation at 675 nanometers per meter
nm677_5light attenuation at 677.5 nanometers per meter
nm680light attenuation at 680 nanometers per meter
nm682_5light attenuation at 682.5 nanometers per meter
nm685light attenuation at 685 nanometers per meter
nm687_5light attenuation at 687.5 nanometers per meter
nm690light attenuation at 690 nanometers per meter
nm692_5light attenuation at 692.5 nanometers per meter
nm695light attenuation at 695 nanometers per meter
nm697_5light attenuation at 697.5 nanometers per meter
nm700light attenuation at 700 nanometers per meter
nm702_5light attenuation at 702.5 nanometers per meter
nm705light attenuation at 705 nanometers per meter
nm707_5light attenuation at 707.5 nanometers per meter
nm710light attenuation at 710 nanometers per meter
nm712_5light attenuation at 712.5 nanometers per meter
nm715light attenuation at 715 nanometers per meter
nm717_5light attenuation at 717.5 nanometers per meter
nm720light attenuation at 720 nanometers per meter
nm722_5light attenuation at 722.5 nanometers per meter
nm725light attenuation at 725 nanometers per meter
nm727_5light attenuation at 727.5 nanometers per meter
nm730light attenuation at 730 nanometers per meter
DOC_uMDissolved Organic Carbon micro Mole (uM)
DBC_uMDissolved black carbon (DBC) micro Mole (uM)
I8_mgper100mgOC_fresh_waterI8 estimate from 8 lignin phenols found in freshwater units in milligrams lignin per 100 milligrams Organic Carbon
Lignin_sum8phenol_nMDissolved lignin sum8 phenol nanomole (nM)
TDN_uMtotal dissolved nitrogen (TDN) micro Mole (uM)
NO3_NO2_ugNperLDissolved nutrients (NO3+NO2) microgram Nitrogen per Liter (ugN/L)
NH4_ugNperLDissolved nutrients (NH4) microgram Nitrogen per Liter (ugN/L)
PO4_ugPperLDissolved nutrients (PO4) microgram Phosphorus per Liter (ugN/L)
SiO2_mgperLDissolved nutrients (SiO2) miligram per Liter (mg/L)
WaterLevel_rel_to_MSLwater level relative to Mean Sea Level meters
MicroCAT_SalinityWater salinity psu
YSI_SalinityWater salinity psu
Temp_C_MicroCATWater temperature degrees Celsius
Temp_C_YSIWater temperature degrees Celsius
Flour_CDOMColored dissolved organic matter (CDOM fluorescence) unitless
Time_Since_CleaningTime since cleaning days
DO_mgperL_YSIDissolved oxygen miligrams per liter (mg/L)
B6CA_uMbenzene polycarboxylic acids (B6CA) microMole (uM)
B5CA_uMbenzene polycarboxylic acids (B5CA) microMole (uM)
B4CA_uMbenzene polycarboxylic acids (B4CA) microMole (uM)
BC124_B3CA_uMbenzene polycarboxylic acids (BC124 B3CA) microMole (uM)
BC123_B3CA_uMbenzene polycarboxylic acids (BC123 B3CA) microMole (uM)
B6CA_B5CA_nMbenzene polycarboxylic acids (B6CA B5CA) microMole (uM)
SumS8_ngperLsum S8 nanogram per Liter (ng/L)
SumS6_ngperLsum S6 nanogram per Liter (ng/L)
I6_mgper100mg_OC_for_marine_waterI6 estimate from 6 lignin phenols found in marine water milligrams lignin per 100 milligrams Organic Carbon
Manual_SalinitySalinity psu
time_point_typetype of observation (discrete or continuous) unitless
latlatitude north decimal degrees
lonlongitude east decimal degrees
depthdepth of samples meters


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
microcat
Generic Instrument Name
CTD Sea-Bird MicroCAT 37
Dataset-specific Description
In situ temperature and salinity: microcat and YSI sondes
Generic Instrument Description
The Sea-Bird MicroCAT CTD unit is a high-accuracy conductivity and temperature recorder based on the Sea-Bird SBE 37 MicroCAT series of products. It can be configured with optional pressure sensor, internal batteries, memory, built-in Inductive Modem, integral Pump, and/or SBE-43 Integrated Dissolved Oxygen sensor. Constructed of titanium and other non-corroding materials for long life with minimal maintenance, the MicroCAT is designed for long duration on moorings. In a typical mooring, a modem module housed in the buoy communicates with underwater instruments and is interfaced to a computer or data logger via serial port. The computer or data logger is programmed to poll each instrument on the mooring for its data, and send the data to a telemetry transmitter (satellite link, cell phone, RF modem, etc.). The MicroCAT saves data in memory for upload after recovery, providing a data backup if real-time telemetry is interrupted.

Dataset-specific Instrument Name
YSI sondes
Generic Instrument Name
YSI Sonde 6-Series
Dataset-specific Description
In situ temperature and salinity: microcat and YSI sondes. In situ CDOM fluorescence: YSI sonde
Generic Instrument Description
YSI 6-Series water quality sondes and sensors are instruments for environmental monitoring and long-term deployments. YSI datasondes accept multiple water quality sensors (i.e., they are multiparameter sondes). Sondes can measure temperature, conductivity, dissolved oxygen, depth, turbidity, and other water quality parameters. The 6-Series includes several models. More from YSI.

Dataset-specific Instrument Name
S-CAN spectrolyzer
Generic Instrument Name
Spectrometer
Dataset-specific Description
In situ attenuation: S-CAN spectrolyzer.
Generic Instrument Description
A spectrometer is an optical instrument used to measure properties of light over a specific portion of the electromagnetic spectrum.


[ table of contents | back to top ]

Deployments

Groves_Creek_2013-2015

Website
Platform
Groves Creek - SkIO
Start Date
2013-07-26
End Date
2015-03-11
Description
Studies of temporal and compositional changes in exported material in a saltmarsh, both the quantity and quality of dissolved organic matter (DOM) and particulate organic matter (POM) exported from Groves Creek.


[ table of contents | back to top ]

Project Information

Collaborative Research: Marine priming effect - molecular mechanisms for the biomineralization of terrigenous dissolved organic matter in the ocean (Marine priming effect)


Description from NSF award abstract:
Large fluxes of apparently refractory terrigenous dissolved organic matter (t-DOM) are transported through rivers to the coast each year, yet there are vanishingly low traces of t-DOM in the oceans. The removal of t-DOM is central to the global carbon cycle, yet the mechanisms that drive removal remain poorly understood. In soils, the presence of labile organic compounds is known to enhance the remineralization of recalcitrant compounds, a phenomenon known as the priming effect (PE). The PE is quantitatively important in soil systems, but has received little attention in aquatic systems despite its potential to explain C mineralization patterns at the land-sea interface. This project investigates the magnitude of PE in the coastal ocean and the metabolic and ecological mechanisms that give rise to it. It focuses on the microbial communities of US Atlantic Ocean coastal marshes. In these systems, river-borne t-DOM provides a particularly valuable and tractable model for evaluating the magnitude of the PE. The study utilizes a well-characterized DOM standard collected from a Georgia river as the model t-DOM material in a series of laboratory experiments with natural coastal microbial communities and cultures of heterotrophic marine bacteria of the Roseobacter lineage. Roseobacters are particularly appropriate biological models for this work as they are abundant in southeastern US coastal zones and are known to catabolize lignin and other plant-derived aromatic compounds. Long-term (60 day) incubation experiments will track the PE resulting from addition of labile DOM of differing chemical complexity. Changes in lignin phenols will be the primary measure of the influence of PE on t-DOM degradation, but the research also monitors a broader suite of aromatic compounds represented by optical properties and identified by high-resolution mass spectrometry. Measurements of the microbial response to added labile organic matter, via extracellular enzyme activities, bacterial production, community composition and gene transcript analysis, will reveal the biological mechanisms responsible for the PE. Experiments using Roseobacter strains will allow detailed investigation of the relationship between metabolic pathways, specific bacteria, and organic carbon mineralization in a well-defined experimental system. Data on gene expression, microbial activity, and DOM transformations from the lab experiments will be integrated to elucidate the specific metabolic pathways invoked as part of the PE and guide development of molecular tools to track genetic signatures along a river to coastal ocean transect in the final year of the project.

The role of heterotrophic microorganisms in remineralizing t-DOM at the land-sea interface is a central question in biological oceanography. Components of t-DOM, principally lignin, are refractory in the sense that degradation rates are typically slow relative to other biomolecules, and yet lignin is effectively removed somewhere between land and the open ocean. The project will determine whether priming plays a role in the rapid removal of t-DOM in the coastal ocean, provide evidence for the types of labile organic matter most effective as priming agents, and attemp to discover the metabolic pathways by which the PE is mediated. These studies have the potential to reveal conserved and predictable metabolic responses that may contribute to regulation of the transformation and turnover of naturally occurring semi-labile/refractory DOM in marine environments. As climate change is likely to affect fluxes of both terrigenous carbon and nutrients to the coastal ocean, understanding the magnitude and mechanisms of PE will be necessary to predict the geochemical consequences of these changing fluxes.

This project is related to the project "Tempo and mode of salt marsh exchange" found at https://www.bco-dmo.org/project/564747.



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]