Date, time, location, and depth range for MOCNESS tows from the R/V Seward Johnson, R/V Knorr in the Eastern Tropical North Pacific from 2007-10-25 to 2009-01-01

Website: https://www.bco-dmo.org/dataset/786098
Data Type: Cruise Results
Version: 1
Version Date: 2020-01-30

Project
» Collaborative Research: Zooplankton in the Redoxcline of the Cariaco Basin: Impact on Biogeochemical Cycling (ETP)

Program
» Ocean Carbon and Biogeochemistry (OCB)
ContributorsAffiliationRole
Wishner, KarenUniversity of Rhode Island (URI-GSO)Principal Investigator
Seibel, BradUniversity of South Florida (USF)Co-Principal Investigator
Biddle, MathewWoods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager

Abstract
Date, time, location, and depth range for MOCNESS tows


Coverage

Spatial Extent: N:13.177 E:-90.001 S:8.964 W:-105.296
Temporal Extent: 2007-10-25 - 2009-01-01

Dataset Description

Vertically-stratified day and night MOCNESS tows usually from 1200 or 1000 m to the surface.  Some tows covered smaller depth intervals in finer detail.  See Wishner et al. 2013, 2018, and 2019 (online preprint in review) for more details.


Methods & Sampling

See Wishner et al. 2013, 2018, and 2019 (online preprint in review) for details and results.  Sampling for zooplankton occurred on the upcast portion of the tow.  Samples were preserved in borate-buffered formaldehyde at sea.  Zooplankton, especially copepods, were sorted and identified microscopically later in the lab.  


Data Processing Description

BCO-DMO Processing Notes:
 - added conventional header with dataset name, PI name, version date
 - modified parameter names to conform with BCO-DMO naming conventions
 - extracted cruise_id from file names
 - combined Date_UTC and Time_In_UTC to create ISO_DateTime_UTC
 - replaced comma with semicolon in Comments field

 


[ table of contents | back to top ]

Data Files

File
moc_event_log.csv
(Comma Separated Values (.csv), 4.61 KB)
MD5:9a90c4913e477644f8fea8b7ae641797
Primary data file for dataset ID 786098

[ table of contents | back to top ]

Related Publications

Maas, A. E., Frazar, S. L., Outram, D. M., Seibel, B. A., & Wishner, K. F. (2014). Fine-scale vertical distribution of macroplankton and micronekton in the Eastern Tropical North Pacific in association with an oxygen minimum zone. Journal of Plankton Research, 36(6), 1557–1575. doi:10.1093/plankt/fbu077
Results
Williams, R. L., Wakeham, S., McKinney, R., & Wishner, K. F. (2014). Trophic ecology and vertical patterns of carbon and nitrogen stable isotopes in zooplankton from oxygen minimum zone regions. Deep Sea Research Part I: Oceanographic Research Papers, 90, 36–47. doi:10.1016/j.dsr.2014.04.008
Results
Wishner, K. F., Outram, D. M., Seibel, B. A., Daly, K. L., & Williams, R. L. (2013). Zooplankton in the eastern tropical north Pacific: Boundary effects of oxygen minimum zone expansion. Deep Sea Research Part I: Oceanographic Research Papers, 79, 122–140. doi:10.1016/j.dsr.2013.05.012
Results
Wishner, K. F., Seibel, B. A., Roman, C., Deutsch, C., Outram, D., Shaw, C. T., … Riley, S. (2018). Ocean deoxygenation and zooplankton: Very small oxygen differences matter. Science Advances, 4(12), eaau5180. doi:10.1126/sciadv.aau5180
Results
Wishner, K. F., Seibel, B., & Outram, D. (2019). Ocean Deoxygenation and Copepods: Coping with Oxygen Minimum Zone Variability. doi:10.5194/bg-2019-394
Results

[ table of contents | back to top ]

Related Datasets

IsRelatedTo
Wishner, K., Outram, D., Seibel, B., Roman, C. (2021) Abundances of copepod species in each net from MOCNESS tows in the Eastern Tropical North Pacific collected on four research cruises from 2007-2017. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2021-07-09 doi:10.26008/1912/bco-dmo.855395.1 [view at BCO-DMO]

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
cruise_ididentifier for the cruise as extracted from the file name unitless
MOCMOCNESS Number unitless
StationStation number unitless
Tow_Typetype of tow unitless
ISO_DateTime_UTCDate and time following the ISO8601 format unitless
Date_Locallocal date in mmddyyyy format unitless
Date_UTCUTC date in mmddyyyy format unitless
Time_In_UTCUTC time in following format HHMM unitless
Time_Out_UTCUTC time out following format HHMM unitless
Time_In_LocalLocal time in following format HHMM. Cruise SJ07 was UTC-500. Cruise KN0819502 was UTC-600. unitless
Time_Out_Locallocal time out following format HHMM. Cruise SJ07 was UTC-500. Cruise KN0819502 was UTC-600. unitless
Lat_Inlatitude in decimal degrees with negative values indicating South decimal degrees
Lon_Inlongitude in decimal degrees with negative values indicating West decimal degrees
Lat_Outlatitude in decimal degrees with negative values indicating South decimal degrees
Lon_Outlongitude in decimal degrees with negative values indicating West decimal degrees
Day_NightDesignator if cast was during the day or night unitless
Min_Depthminimum depth meters (m)
Max_Depthmaximum depth meters (m)
Commentsadditional comments unitless


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
MOCNESS
Generic Instrument Name
MOCNESS
Dataset-specific Description
1 m2 MOCNESS
Generic Instrument Description
The Multiple Opening/Closing Net and Environmental Sensing System or MOCNESS is a family of net systems based on the Tucker Trawl principle. There are currently 8 different sizes of MOCNESS in existence which are designed for capture of different size ranges of zooplankton and micro-nekton Each system is designated according to the size of the net mouth opening and in two cases, the number of nets it carries. The original MOCNESS (Wiebe et al, 1976) was a redesigned and improved version of a system described by Frost and McCrone (1974).(from MOCNESS manual) This designation is used when the specific type of MOCNESS (number and size of nets) was not specified by the contributing investigator.


[ table of contents | back to top ]

Deployments

SJ07

Website
Platform
R/V Seward Johnson
Start Date
2007-10-18
End Date
2007-11-17
Description
Cruise from Panama City to Panama City Figure 1. Station locations in the eastern tropical north Pacific overlaid on a MODIS (Moderate-resolution Imaging Spectroradiometer) image of ocean color during October 2007. Image courtesy of Inia Soto (USF). SJ07 Cruise Summary (ROSCOP)

KN195-02

Website
Platform
R/V Knorr
Start Date
2008-12-08
End Date
2009-01-06
Description
Figure 1.  Station locations in the eastern tropical north Pacific overlaid on a MODIS (Moderate-resolution Imaging Spectroradiometer) image of ocean color during December 2008. Image courtesy of Inia Soto (USF). KN195-02 Cruise Summary (ROSCOP) See additional information from R2R: https://www.rvdata.us/search/cruise/KN195-02


[ table of contents | back to top ]

Project Information

Collaborative Research: Zooplankton in the Redoxcline of the Cariaco Basin: Impact on Biogeochemical Cycling (ETP)

Coverage: Eastern tropical Pacific


This project aims to characterize the spatial and interannual variability of physical, chemical, and biological properties between low productivity and high productivity regions of the eastern tropical Pacific. In particular, we will investigate the physiology of bacteria, phytoplankton, and zooplankton and food web interactions in relation to the oxygen minimum zone. Our results also will provide information on how marine carbon and nitrogen cycles are modified in suboxic regions of the ocean. Measurements include: ADCP, temperature, salinity, O2, pH, total DIC, fCO2, nutrients, CDOM, POC/N, methane oxidation rates, denitrification rates, chlorophyll, phytoplankton C&N uptake rates, bacteria abundance/growth rates/molecular fingerprinting, lipid biomarkers, microzooplankton grazing rates, mesozooplankton abundance, distribution, and physiology, and particle flux rates.

NSF abstract:

The CARIACO (CArbon Retention In A Colored Ocean) Program is a time-series programs, with the central goal to better understand seasonal to decadal time-scales of processes governing ocean biogeochemistry. The CARIACO site is situated in the tropics on a productive continental margin off Venezuela, the basin is anoxic, and the site is strongly connected to paleoclimate investigations. Thus, CARIACO has the additional goal of relating modern oceanographic processes with the production, transformation, and preservation of particulate matter in the sediment record.

Zooplankton composition, behavior, and physiological rates are important components of the biological pump. Recent findings from the Cariaco Basin and other regions with pelagic redoxclines (suboxic and anoxic interfaces) suggest that they are active regions of biogeochemical cycling, in which C may be directly transferred from bacterial production to zooplankton grazers.

The goals of this project are to determine the vertical and horizontal distributions of zooplankton in relation to the redoxcline during two seasons using discrete-depth net samples and a vertical-profiling laser-line scan camera system. Anaerobic and aerobic respiration and metabolites, excretion, and egestion rates will be experimentally determined for vertical migrators and resident species nearsurface and at suboxic and anoxic depths to determine whether zooplankton differ in their release of metabolic and egested products, due to differences in their metabolism and/or composition of food resources. Grazing experiments, in combination with lipid biomarkers and stable isotopic compositions, will be used to assess in situ diet and long-term feeding history of zooplankton. Fecal pellet composition will be compared with pellets in sediment traps. Time-series zooplankton samples also will be analyzed to obtain temporal information on zooplankton community dynamics and allow a seasonal estimate of the zooplankton contribution to elemental fluxes.

Intellectual Merit. One of the grand challenges of oceanography is to understand the processes that control the transformation and fate of organic carbon in marine systems. Meeting this challenge is hindered by a lack of basic information about factors that govern the response of biological activity to environmental forcing and climate change. In particular, the role of the marine biosphere in the global carbon cycle remains poorly constrained, in part due to uncertainties about biological controls on the quality and quantity of carbon export. This project will contribute to our knowledge of the role of mesozooplankton in biogeochemical cycles, especially in relation to how processes may be modified in regions with anoxic or suboxic layers and strong redox gradients, and will help to correctly understand the links between water column processes and climate history as recorded in the varved sediments of the Cariaco Basin.

Broader Impacts. The zooplankton time-series will provide information on patterns of marine biodiversity and ecological interactions from a poorly known region. The CARIACO Program has an ongoing impact in technology transfer and human resource development in Venezuela. This project will help train personnel in Venezuela and will support several graduate students. The lead investigators and students will develop materials on the project for dissemination through the NSF-Center for Ocean Science Education Excellence (COSEE) located at USF.

Note [2019-12-17]: BCO-DMO Project page updated to reflect information at nfs.gov for this collaborative award.
* Project tile changed from "Eastern Tropical Pacific" to the NSF award title "Collaborative Research: Zooplankton in the Redoxcline of the Cariaco Basin: Impact on Biogeochemical Cycling."
* The other award number in this collaborative award added to the page OCE-0526502
* Person roles on the page updated to reflect the NSF award roles (PI or Co-PI) all others on the page changed to "Scientist" from "Co-PI" if not listed as a Co-PI on the NSF award.



[ table of contents | back to top ]

Program Information

Ocean Carbon and Biogeochemistry (OCB)


Coverage: Global


The Ocean Carbon and Biogeochemistry (OCB) program focuses on the ocean's role as a component of the global Earth system, bringing together research in geochemistry, ocean physics, and ecology that inform on and advance our understanding of ocean biogeochemistry. The overall program goals are to promote, plan, and coordinate collaborative, multidisciplinary research opportunities within the U.S. research community and with international partners. Important OCB-related activities currently include: the Ocean Carbon and Climate Change (OCCC) and the North American Carbon Program (NACP); U.S. contributions to IMBER, SOLAS, CARBOOCEAN; and numerous U.S. single-investigator and medium-size research projects funded by U.S. federal agencies including NASA, NOAA, and NSF.

The scientific mission of OCB is to study the evolving role of the ocean in the global carbon cycle, in the face of environmental variability and change through studies of marine biogeochemical cycles and associated ecosystems.

The overarching OCB science themes include improved understanding and prediction of: 1) oceanic uptake and release of atmospheric CO2 and other greenhouse gases and 2) environmental sensitivities of biogeochemical cycles, marine ecosystems, and interactions between the two.

The OCB Research Priorities (updated January 2012) include: ocean acidification; terrestrial/coastal carbon fluxes and exchanges; climate sensitivities of and change in ecosystem structure and associated impacts on biogeochemical cycles; mesopelagic ecological and biogeochemical interactions; benthic-pelagic feedbacks on biogeochemical cycles; ocean carbon uptake and storage; and expanding low-oxygen conditions in the coastal and open oceans.



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]