Non-cyanobacterial diazotroph nifH-qPCR-based abundances collected from various cruises in the global ocean between 2000-2019

Website: https://www.bco-dmo.org/dataset/982905
Data Type: Synthesis
Version: 1
Version Date: 2025-08-21

Project
» Collaborative Research: Quantifying N2 fixation rates of noncyanobacterial diazotrophs and environmental controls on their activity (NCDN2FIX)
ContributorsAffiliationRole
Turk-Kubo, KendraUniversity of California-Santa Cruz (UCSC)Principal Investigator
Mills, Matthew M.Stanford UniversityScientist
York, Amber D.Woods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager

Abstract
Dataset abstract: This dataset includes available published non-cyanobacterial diazotroph (NCD) qPCR/ddPCR data available prior to August 2021. This dataset was compiled by Mary R Gradoville (UCSC) and Kendra Turk-Kubo (UCSC). If the abundance of an NCD was reported in the original source as undetected, it is included as a 0 in this dataset; detected but not quantified values were given the nominal value of 1 nifH copy/L. Most reported abundances were determined using quantitative PCR, but several source studies used digital droplet PCR (ddPCR). All information about sample collection and processing (including the primer/probe set used) are provided in the source studies listed (source_data). All sampling times listed are in local time. When sampling times were not available, 00:00:00 was used. Data was extrapolated, when possible, using Web Plot digitizer (https://automeris.io/WebPlotDigitizer/). See the results publication Kirk-Turbo et al. (2022; doi:10.1093/femsre/fuac046) for analysis and discussion of these data. Study abstract: The global biogeography of pelagic, non-cyanobacterial diazotrophs (NCDs) is not well constrained. These are potentially important microorganisms in well-lit surface oceans, because if active, they may supply bioavailable nitrogen to the base of the pelagic food web through the process of biological nitrogen fixation. This dataset is a formal meta analysis of all reported measurements of non-cyanobacterial diazotroph abundances in the global ocean, based quantitative PCR (or digital droplet PCR) targeting taxa-specific nifH genes. NifH genes are used to enumerate NCDs, as they are a good genetic proxy for nitrogen fixation capability, and have congruence with other taxonomic markers, like the 16S rRNA gene. In order to create this dataset, we collected all accounts of NCD abundances from previously reported sources, resulting in a database that draws from 59 published studies detailing the abundance of 55 NCD targets, yielding a total of 7385 water column observations. This database shows that while NCD taxa have been quantified from many ocean regions, there has been a strong North Pacific sampling bias. 


Coverage

Location: global ocean samples
Spatial Extent: N:90 E:180 S:-90 W:-180
Temporal Extent: 2000-12-01 - 2019-11-24

Methods & Sampling

This is a formal meta analysis of all available NDC qPCR datasets published between 2000 and 2019. Seawater DNA and RNA samples were collected using two main field approaches, via Niskin bottles attached to rosettes with CTDs, are using the ship's underway seawater systems). Samples were collected by numerous different research groups. DNA and RNA samples were generally filtered through 0.2 µm filers, using a variety of materials, and in some cases, size fractionated samples were collected (e.g. 3 µm and 0.2 µm filters in series). DNA and RNA samples were typically extracted using on column purification-based kits, and in the case where nifH transcription was quantified cDNA (derived from RNA) was typically generated using Superscript reverse transcriptase kits.  Purified DNA/RNA/cDNA were typically stored at -80oC prior to analysis. Quantitative PCR assays (55 total), were developed by multiple different groups, and his database only includes data generated using qPCR using Taqman(R) chemistry.

This dataset was compiled/formatted for CMAP by Mary R Gradoville and Kendra Turk-Kubo from the Zehr Research Group at the University of California Santa Cruz. 

Data sources:  Individual dataset sources are listed in the "source_data" column for each observation (from 59 published studies).  Column "source_doi" is the DOI for the reference provided in "source_data."  Additional details about the specific data used are provided in the "source_location_of_data" column (e.g., specific tables, figures, whether data provided by the authors, or databases).   

Cruise description: This dataset is a compilation of multiple cruises, collectively carried out by numerous research groups, not all funded by NSF. The original citations are provided in the metadata for the dataset. 


Data Processing Description

All data would be retrieved off the qPCR instrument as a simple matrix of sample number and relative fluorescence units, including standards (with known quantities of the target gene). Additional software products are not needed. 

For this dataset, data was extrapolated, when possible, using Web Plot digitizer (https://automeris.io/WebPlotDigitizer/). 


BCO-DMO Processing Description

* Sheet "data" of submitted file "NCDReview_qPCR_database_06092025.xlsx" was exported from excel to capture the formatted values as displayed in excel. The exported csv file was imported into the BCO-DMO data system for this dataset. Table will appear as Data File: 982905_v1_ncd-qpcr-database.csv (along with other download format options).

Additional metadata included in excel sheet "variable metadata" was attached to this dataset as supplemental file 982905_v1_additional_variable_metadata.csv

Additional metadata include in excel sheet "dataset metadata" were added to fields on this BCO-DMO dataset page.

Added DOIs for each source_data reference publication.
* A unique list of each unique reference included in the column "source_data" was made and each provided reference text was matched to a DOI using Crossref's SimpleQuery Tool. And additional column was added to the dataset table "source_doi." The reference text was cleaned for any special characters that didn't display properly in UTF-8 (e.g. "Bostr√ɬ∂m et al. (2007)" -> "Boström et al. (2007)")

The following character replacements were made:

√¢¬Ä¬ê → -
√¢¬Ä¬ì → –
√Ǭ† → make a space (instead of deleting this char)
√ɬ° → á
√ɬ± → ñ
√ɬ© → é
√ɬ≠ → í
√ɬ∂ → ö
√ɬº → ü
√ɬ≥ → ñ
√ɬü → ß

Additional databases included in "source_location_of_data" doi:10.1594/PANGAEA.818214,doi:10.1594/PANGAEA.833791 were added to the section "Related Datasets" on this page.

Missing Data Identifiers:
* In the BCO-DMO data system missing data identifiers are displayed according to the format of data you access. For example, in csv files it will be blank (null) values. In Matlab .mat files it will be NaN values. When viewing data online at BCO-DMO, the missing value will be shown as blank (null) values.


Problem Description

Note: Column "time" in this dataset includes the local date and time, which varies by the location of the data from the source publication. When sampling times were not available, 00:00:00 was used.

[ table of contents | back to top ]

Related Publications

Benavides, M., Conradt, L., Bonnet, S., Berman-Frank, I., Barrillon, S., Petrenko, A., & Doglioli, A. (2021). Fine-scale sampling unveils diazotroph patchiness in the South Pacific Ocean. ISME Communications, 1(1). https://doi.org/10.1038/s43705-021-00006-2
IsDerivedFrom
Benavides, M., Martias, C., Elifantz, H., Berman-Frank, I., Dupouy, C., & Bonnet, S. (2018). Dissolved Organic Matter Influences N2 Fixation in the New Caledonian Lagoon (Western Tropical South Pacific). Frontiers in Marine Science, 5. https://doi.org/10.3389/fmars.2018.00089
IsDerivedFrom
Benavides, M., Moisander, P. H., Berthelot, H., Dittmar, T., Grosso, O., & Bonnet, S. (2015). Mesopelagic N2 Fixation Related to Organic Matter Composition in the Solomon and Bismarck Seas (Southwest Pacific). PLOS ONE, 10(12), e0143775. https://doi.org/10.1371/journal.pone.0143775
IsDerivedFrom
Benavides, M., Moisander, P. H., Daley, M. C., Bode, A., & Arístegui, J. (2016). Longitudinal variability of diazotroph abundances in the subtropical North Atlantic Ocean. Journal of Plankton Research, 38(3), 662–672. doi:10.1093/plankt/fbv121
IsDerivedFrom
Bentzon-Tilia, M., Traving, S. J., Mantikci, M., Knudsen-Leerbeck, H., Hansen, J. L. S., Markager, S., & Riemann, L. (2014). Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries. The ISME Journal, 9(2), 273–285. https://doi.org/10.1038/ismej.2014.119
IsDerivedFrom
Berthelot, H., Benavides, M., Moisander, P. H., Grosso, O., & Bonnet, S. (2017). High‐nitrogen fixation rates in the particulate and dissolved pools in the Western Tropical Pacific (Solomon and Bismarck Seas). Geophysical Research Letters, 44(16), 8414–8423. Portico. https://doi.org/10.1002/2017gl073856 https://doi.org/10.1002/2017GL073856
IsDerivedFrom
Bombar, D., Moisander, P., Dippner, J., Foster, R., Voss, M., Karfeld, B., & Zehr, J. (2011). Distribution of diazotrophic microorganisms and nifH gene expression in the Mekong River plume during intermonsoon. Marine Ecology Progress Series, 424, 39–52. https://doi.org/10.3354/meps08976
IsDerivedFrom
Bombar, D., Turk‐Kubo, K. A., Robidart, J., Carter, B. J., & Zehr, J. P. (2013). Non‐cyanobacterial nifH phylotypes in the North Pacific Subtropical Gyre detected by flow‐cytometry cell sorting. Environmental Microbiology Reports, 5(5), 705–715. Portico. https://doi.org/10.1111/1758-2229.12070
IsDerivedFrom
Bonnet, S., Dekaezemacker, J., Turk-Kubo, K. A., Moutin, T., Hamersley, R. M., Grosso, O., Zehr, J. P., & Capone, D. G. (2013). Aphotic N2 Fixation in the Eastern Tropical South Pacific Ocean. PLoS ONE, 8(12), e81265. https://doi.org/10.1371/journal.pone.0081265
IsDerivedFrom
Bonnet, S., Rodier, M., Turk‐Kubo, K. A., Germineaud, C., Menkes, C., Ganachaud, A., Cravatte, S., Raimbault, P., Campbell, E., Quéroué, F., Sarthou, G., Desnues, A., Maes, C., & Eldin, G. (2015). Contrasted geographical distribution of N2 fixation rates and nifH phylotypes in the Coral and Solomon Seas (southwestern Pacific) during austral winter conditions. Global Biogeochemical Cycles, 29(11), 1874–1892. Portico. https://doi.org/10.1002/2015gb005117 https://doi.org/10.1002/2015GB005117
IsDerivedFrom
Boström, K. H., Riemann, L., Kühl, M., & Hagström, Å. (2006). Isolation and gene quantification of heterotrophic N2‐fixing bacterioplankton in the Baltic Sea. Environmental Microbiology, 9(1), 152–164. Portico. https://doi.org/10.1111/j.1462-2920.2006.01124.x
IsDerivedFrom
Chen, M., Lu, Y., Jiao, N., Tian, J., Kao, S., & Zhang, Y. (2019). Biogeographic drivers of diazotrophs in the western Pacific Ocean. Limnology and Oceanography, 64(3), 1403–1421. Portico. https://doi.org/10.1002/lno.11123
IsDerivedFrom
Chen, T.-Y., Chen, Y. L., Sheu, D.-S., Chen, H.-Y., Lin, Y.-H., & Shiozaki, T. (2019). Community and abundance of heterotrophic diazotrophs in the northern South China Sea: Revealing the potential importance of a new alphaproteobacterium in N2 fixation. Deep Sea Research Part I: Oceanographic Research Papers, 143, 104–114. https://doi.org/10.1016/j.dsr.2018.11.006
IsDerivedFrom
Cheung, S., Zehr, J. P., Xia, X., Tsurumoto, C., Endo, H., Nakaoka, S., Mak, W., Suzuki, K., & Liu, H. (2021). Gamma4: a genetically versatile Gammaproteobacterial nifH phylotype that is widely distributed in the North Pacific Ocean. Environmental Microbiology, 23(8), 4246–4259. Portico. https://doi.org/10.1111/1462-2920.15604
IsDerivedFrom
Church, M. J., Björkman, K. M., Karl, D. M., Saito, M. A., & Zehr, J. P. (2008). Regional distributions of nitrogen‐fixing bacteria in the Pacific Ocean. Limnology and Oceanography, 53(1), 63–77. Portico. https://doi.org/10.4319/lo.2008.53.1.0063
IsDerivedFrom
Church, M. J., Short, C. M., Jenkins, B. D., Karl, D. M., & Zehr, J. P. (2005). Temporal Patterns of Nitrogenase Gene (nifH) Expression in the Oligotrophic North Pacific Ocean. Applied and Environmental Microbiology, 71(9), 5362–5370. https://doi.org/10.1128/aem.71.9.5362-5370.2005 https://doi.org/10.1128/AEM.71.9.5362-5370.2005
IsDerivedFrom
Church, M., Jenkins, B., Karl, D., & Zehr, J. (2005). Vertical distributions of nitrogen-fixing phylotypes at Stn Aloha in the oligotrophic North Pacific Ocean. Aquatic Microbial Ecology, 38, 3–14. https://doi.org/10.3354/ame038003
IsDerivedFrom
Delmont, T. O., Quince, C., Shaiber, A., Esen, Ö. C., Lee, S. T., Rappé, M. S., McLellan, S. L., Lücker, S., & Eren, A. M. (2018). Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nature Microbiology, 3(7), 804–813. https://doi.org/10.1038/s41564-018-0176-9
IsDerivedFrom
Farnelid, H., Bentzon-Tilia, M., Andersson, A. F., Bertilsson, S., Jost, G., Labrenz, M., Jürgens, K., & Riemann, L. (2013). Active nitrogen-fixing heterotrophic bacteria at and below the chemocline of the central Baltic Sea. The ISME Journal, 7(7), 1413–1423. https://doi.org/10.1038/ismej.2013.26
IsDerivedFrom
Farnelid, H., Harder, J., Bentzon‐Tilia, M., & Riemann, L. (2013). Isolation of heterotrophic diazotrophic bacteria from estuarine surface waters. Environmental Microbiology, 16(10), 3072–3082. Portico. https://doi.org/10.1111/1462-2920.12335
IsDerivedFrom
Fong, A. A., Karl, D. M., Lukas, R., Letelier, R. M., Zehr, J. P., & Church, M. J. (2008). Nitrogen fixation in an anticyclonic eddy in the oligotrophic North Pacific Ocean. The ISME Journal, 2(6), 663–676. https://doi.org/10.1038/ismej.2008.22
IsDerivedFrom
Foster, R. A., Paytan, A., & Zehr, J. P. (2009). Seasonality of N2 fixation and nifH gene diversity in the Gulf of Aqaba (Red Sea). Limnology and Oceanography, 54(1), 219–233. Portico. https://doi.org/10.4319/lo.2009.54.1.0219
IsDerivedFrom
Gradoville, M. R., Bombar, D., Crump, B. C., Letelier, R. M., Zehr, J. P., & White, A. E. (2017). Diversity and activity of nitrogen‐fixing communities across ocean basins. Limnology and Oceanography, 62(5), 1895–1909. Portico. https://doi.org/10.1002/lno.10542
IsDerivedFrom
Gradoville, M. R., Farnelid, H., White, A. E., Turk‐Kubo, K. A., Stewart, B., Ribalet, F., Ferrón, S., Pinedo‐Gonzalez, P., Armbrust, E. V., Karl, D. M., John, S., & Zehr, J. P. (2020). Latitudinal constraints on the abundance and activity of the cyanobacterium UCYN‐A and other marine diazotrophs in the North Pacific. Limnology and Oceanography, 65(8), 1858–1875. Portico. https://doi.org/10.1002/lno.11423
IsDerivedFrom
Großkopf, T., Mohr, W., Baustian, T., Schunck, H., Gill, D., Kuypers, M. M. M., Lavik, G., Schmitz, R. A., Wallace, D. W. R., & LaRoche, J. (2012). Doubling of marine dinitrogen-fixation rates based on direct measurements. Nature, 488(7411), 361–364. https://doi.org/10.1038/nature11338
IsDerivedFrom
Halm, H., Lam, P., Ferdelman, T. G., Lavik, G., Dittmar, T., LaRoche, J., D’Hondt, S., & Kuypers, M. M. M. (2011). Heterotrophic organisms dominate nitrogen fixation in the South Pacific Gyre. The ISME Journal, 6(6), 1238–1249. https://doi.org/10.1038/ismej.2011.182
IsDerivedFrom
Hamersley, M., Turk, K., Leinweber, A., Gruber, N., Zehr, J., Gunderson, T., & Capone, D. (2011). Nitrogen fixation within the water column associated with two hypoxic basins in the Southern California Bight. Aquatic Microbial Ecology, 63(2), 193–205. https://doi.org/10.3354/ame01494
IsDerivedFrom
Hewson, I., Moisander, P., Achilles, K., Carlson, C., Jenkins, B., Mondragon, E., Morrison, A., & Zehr, J. (2007). Characteristics of diazotrophs in surface to abyssopelagic waters of the Sargasso Sea. Aquatic Microbial Ecology, 46, 15–30. https://doi.org/10.3354/ame046015
IsDerivedFrom
LaRoche, J., Leibniz Institute for Marine Sciences, jlaroche@ifm-geomar.de
IsDerivedFrom
Langlois, R. J., Hümmer, D., & LaRoche, J. (2008). Abundances and Distributions of the Dominant nifH Phylotypes in the Northern Atlantic Ocean. Applied and Environmental Microbiology, 74(6), 1922–1931. https://doi.org/10.1128/aem.01720-07 https://doi.org/10.1128/AEM.01720-07
IsDerivedFrom
Liu, J., Zhou, L., Li, J., Lin, Y., Ke, Z., Zhao, C., Liu, H., Jiang, X., He, Y., & Tan, Y. (2020). Effect of mesoscale eddies on diazotroph community structure and nitrogen fixation rates in the South China Sea. Regional Studies in Marine Science, 35, 101106. https://doi.org/10.1016/j.rsma.2020.101106
IsDerivedFrom
Loescher, C. R., Großkopf, T., Desai, F. D., Gill, D., Schunck, H., Croot, P. L., Schlosser, C., Neulinger, S. C., Pinnow, N., Lavik, G., Kuypers, M. M. M., LaRoche, J., & Schmitz, R. A. (2014). Facets of diazotrophy in the oxygen minimum zone waters off Peru. The ISME Journal, 8(11), 2180–2192. https://doi.org/10.1038/ismej.2014.71
IsDerivedFrom
Lu, Y., Wen, Z., Shi, D., Lin, W., Bonnet, S., Dai, M., & Kao, S. (2019). Biogeography of N2 Fixation Influenced by the Western Boundary Current Intrusion in the South China Sea. Journal of Geophysical Research: Oceans, 124(10), 6983–6996. Portico. https://doi.org/10.1029/2018jc014781 https://doi.org/10.1029/2018JC014781
IsDerivedFrom
Löscher, C. R., Mohr, W., Bange, H. W., & Canfield, D. E. (2020). No nitrogen fixation in the Bay of Bengal? Biogeosciences, 17(4), 851–864. https://doi.org/10.5194/bg-17-851-2020
IsDerivedFrom
Martínez-Pérez, C., Mohr, W., Löscher, C. R., Dekaezemacker, J., Littmann, S., Yilmaz, P., Lehnen, N., Fuchs, B. M., Lavik, G., Schmitz, R. A., LaRoche, J., & Kuypers, M. M. M. (2016). The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nature Microbiology, 1(11). https://doi.org/10.1038/nmicrobiol.2016.163
IsDerivedFrom
Messer, L. F., Brown, M. V., Furnas, M. J., Carney, R. L., McKinnon, A. D., & Seymour, J. R. (2017). Diversity and Activity of Diazotrophs in Great Barrier Reef Surface Waters. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00967
IsDerivedFrom
Moisander, P. H., Beinart, R. A., Voss, M., & Zehr, J. P. (2008). Diversity and abundance of diazotrophic microorganisms in the South China Sea during intermonsoon. The ISME Journal, 2(9), 954–967. https://doi.org/10.1038/ismej.2008.51
IsDerivedFrom
Moisander, P. H., Serros, T., Paerl, R. W., Beinart, R. A., & Zehr, J. P. (2014). Gammaproteobacterial diazotrophs and nifH gene expression in surface waters of the South Pacific Ocean. The ISME Journal, 8(10), 1962–1973. https://doi.org/10.1038/ismej.2014.49
IsDerivedFrom
Moisander, P. H., Zhang, R., Boyle, E. A., Hewson, I., Montoya, J. P., & Zehr, J. P. (2011). Analogous nutrient limitations in unicellular diazotrophs and Prochlorococcus in the South Pacific Ocean. The ISME Journal, 6(4), 733–744. https://doi.org/10.1038/ismej.2011.152
IsDerivedFrom
Moreira-Coello, V., Mouriño-Carballido, B., Marañón, E., Fernández-Carrera, A., Bode, A., & Varela, M. M. (2017). Biological N2 Fixation in the Upwelling Region off NW Iberia: Magnitude, Relevance, and Players. Frontiers in Marine Science, 4. https://doi.org/10.3389/fmars.2017.00303
IsDerivedFrom
Palter, J. B., Ames, E. J., Benavides, M., Gonçalves Neto, A., Granger, J., Moisander, P. H., Watkins‐Brandt, K. S., & White, A. E. (2020). High N2 Fixation in and Near the Gulf Stream Consistent with a Circulation Control on Diazotrophy. Geophysical Research Letters, 47(16). Portico. https://doi.org/10.1029/2020gl089103 https://doi.org/10.1029/2020GL089103
IsDerivedFrom
Ratten, J.-M., LaRoche, J., Desai, D. K., Shelley, R. U., Landing, W. M., Boyle, E., Cutter, G. A., & Langlois, R. J. (2015). Sources of iron and phosphate affect the distribution of diazotrophs in the North Atlantic. Deep Sea Research Part II: Topical Studies in Oceanography, 116, 332–341. https://doi.org/10.1016/j.dsr2.2014.11.012
IsDerivedFrom
Ratten, Jenni-Marie, et al. "ISOLATION AND GENOME SEQUENCING OF A NOVEL MARINE HETEROTROPHIC DIAZOTROPH SHEDS LIGHT ON ITS LIFESTYLE." DEDICATION PAGE (2017): 182.
IsDerivedFrom
Severin, I., Bentzon-Tilia, M., Moisander, P. H., & Riemann, L. (2015). Nitrogenase expression in estuarine bacterioplankton influenced by organic carbon and availability of oxygen. FEMS Microbiology Letters, 362(14), fnv105. https://doi.org/10.1093/femsle/fnv105
IsDerivedFrom
Shiozaki, T., Bombar, D., Riemann, L., Hashihama, F., Takeda, S., Yamaguchi, T., Ehama, M., Hamasaki, K., & Furuya, K. (2017). Basin scale variability of active diazotrophs and nitrogen fixation in the North Pacific, from the tropics to the subarctic Bering Sea. Global Biogeochemical Cycles, 31(6), 996–1009. Portico. https://doi.org/10.1002/2017gb005681 https://doi.org/10.1002/2017GB005681
IsDerivedFrom
Shiozaki, T., Bombar, D., Riemann, L., Sato, M., Hashihama, F., Kodama, T., Tanita, I., Takeda, S., Saito, H., Hamasaki, K., & Furuya, K. (2018). Linkage Between Dinitrogen Fixation and Primary Production in the Oligotrophic South Pacific Ocean. Global Biogeochemical Cycles, 32(7), 1028–1044. Portico. https://doi.org/10.1029/2017gb005869 https://doi.org/10.1029/2017GB005869
IsDerivedFrom
Shiozaki, T., Ijichi, M., Kodama, T., Takeda, S., & Furuya, K. (2014). Heterotrophic bacteria as major nitrogen fixers in the euphotic zone of the Indian Ocean. Global Biogeochemical Cycles, 28(10), 1096–1110. Portico. https://doi.org/10.1002/2014gb004886 https://doi.org/10.1002/2014GB004886
IsDerivedFrom
Shiozaki, T., Kondo, Y., Yuasa, D., & Takeda, S. (2018). Distribution of major diazotrophs in the surface water of the Kuroshio from northeastern Taiwan to south of mainland Japan. Journal of Plankton Research, 40(4), 407–419. https://doi.org/10.1093/plankt/fby027
IsDerivedFrom
Shiozaki, T., Nagata, T., Ijichi, M., & Furuya, K. (2015). Nitrogen fixation and the diazotroph community in the temperate coastal region of the northwestern North Pacific. Biogeosciences, 12(15), 4751–4764. https://doi.org/10.5194/bg-12-4751-2015
IsDerivedFrom
Short, S. M., Jenkins, B. D., & Zehr, J. P. (2004). Spatial and Temporal Distribution of Two Diazotrophic Bacteria in the Chesapeake Bay. Applied and Environmental Microbiology, 70(4), 2186–2192. https://doi.org/10.1128/aem.70.4.2186-2192.2004 https://doi.org/10.1128/AEM.70.4.2186-2192.2004
IsDerivedFrom
Sohm, J. A., Hilton, J. A., Noble, A. E., Zehr, J. P., Saito, M. A., & Webb, E. A. (2011). Nitrogen fixation in the South Atlantic Gyre and the Benguela Upwelling System. Geophysical Research Letters, 38(16), n/a–n/a. doi:10.1029/2011gl048315 https://doi.org/10.1029/2011GL048315
IsDerivedFrom
Turk, K. A., Rees, A. P., Zehr, J. P., Pereira, N., Swift, P., Shelley, R., Lohan, M., Woodward, E. M. S., & Gilbert, J. (2011). Nitrogen fixation and nitrogenase (nifH) expression in tropical waters of the eastern North Atlantic. The ISME Journal, 5(7), 1201–1212. https://doi.org/10.1038/ismej.2010.205
IsDerivedFrom
Turk-Kubo, K. A., Connell, P., Caron, D., Hogan, M. E., Farnelid, H. M., & Zehr, J. P. (2018). In Situ Diazotroph Population Dynamics Under Different Resource Ratios in the North Pacific Subtropical Gyre. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01616
IsDerivedFrom
Turk-Kubo, K. A., Frank, I. E., Hogan, M. E., Desnues, A., Bonnet, S., & Zehr, J. P. (2015). Diazotroph community succession during the VAHINE mesocosm experiment (New Caledonia lagoon). Biogeosciences, 12(24), 7435–7452. https://doi.org/10.5194/bg-12-7435-2015
IsDerivedFrom
Turk-Kubo, K. A., Gradoville, M. R., Cheung, S., Cornejo-Castillo, F. M., Harding, K. J., Morando, M., Mills, M., & Zehr, J. P. (2022). Non-cyanobacterial diazotrophs: global diversity, distribution, ecophysiology, and activity in marine waters. FEMS Microbiology Reviews, 47(6). https://doi.org/10.1093/femsre/fuac046
Results
Turk‐Kubo, K. A., Karamchandani, M., Capone, D. G., & Zehr, J. P. (2014). The paradox of marine heterotrophic nitrogen fixation: abundances of heterotrophic diazotrophs do not account for nitrogen fixation rates in the Eastern Tropical South Pacific. Environmental Microbiology, 16(10), 3095–3114. Portico. https://doi.org/10.1111/1462-2920.12346
IsDerivedFrom
Wu, C., Kan, J., Liu, H., Pujari, L., Guo, C., Wang, X., & Sun, J. (2019). Heterotrophic Bacteria Dominate the Diazotrophic Community in the Eastern Indian Ocean (EIO) during Pre-Southwest Monsoon. Microbial Ecology, 78(4), 804–819. https://doi.org/10.1007/s00248-019-01355-1
IsDerivedFrom
Zehr, J. P., Waterbury, J. B., Turner, P. J., Montoya, J. P., Omoregie, E., Steward, G. F., Hansen, A., & Karl, D. M. (2001). Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature, 412(6847), 635–638. https://doi.org/10.1038/35088063
IsDerivedFrom
Zhang, Y., Zhao, Z., Sun, J., & Jiao, N. (2011). Diversity and distribution of diazotrophic communities in the South China Sea deep basin with mesoscale cyclonic eddy perturbations. FEMS Microbiology Ecology, 78(3), 417–427. https://doi.org/10.1111/j.1574-6941.2011.01174.x
IsDerivedFrom

[ table of contents | back to top ]

Related Datasets

Different Version
Morando, M., Magasin, J., Cheung, S., Mills, M. M., Zehr, J. P., & A. Turk-Kubo, K. (2024). Global biogeography of N2-fixing microbes: nifH amplicon database and analytics workflow [Data set]. figshare. https://doi.org/10.6084/M9.FIGSHARE.23795943 https://doi.org/10.6084/m9.figshare.23795943
Turk-Kubo, K. A., & Gradoville, M. R. (2022). Accompanying data for "Non-cyanobacterial diazotrophs: Global diversity, distribution, ecophysiology, and activity in marine waters" [Data set]. Zenodo. https://doi.org/10.5281/ZENODO.6537451 https://doi.org/10.5281/zenodo.6537451
IsDerivedFrom
Luo, Y., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I., Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D. G., Carpenter, E. J., Chen, Y.-L., Church, M. J., Dore, J. E., Falcón, L. I., Fernández, A., Foster, R. A., Furuya, K., Gomez, F., … Zehr, J. P. (2013). Global distributions of diazotrophs abundance, biomass and nitrogen fixation rates - Collection of source datasets - Contribution to the MAREDAT World Ocean Atlas of Plankton Functional Types. PANGAEA. https://doi.org/10.1594/PANGAEA.818214
Löscher, C. R., Großkopf, T., Desai, F., Gill, D., Schunck, H., Croot, P. L., Schlosser, C., Neulinger, S. C., Pinnow, N., Lavik, G., Kuypers, M. M. M., LaRoche, J., & Schmitz, R. A. (2014). Nitrogen fixation and nitrogen gene abundance of METEOR cruises M77/3 and M77/4. PANGAEA. https://doi.org/10.1594/PANGAEA.833791

[ table of contents | back to top ]

Parameters

ParameterDescriptionUnits
time

date, time (local). Local time zone varies by source location.

unitless
lat

latitude

decimal degrees
lon

longitude

decimal degrees
depth

depth

meters (m)
source_data

The reference for the source data publication

unitless
source_data_doi

Digital object identifier (DOI) for the source_data (reference)

unitless
source_location_of_data

Additional information about the source data from original publication

unitless
notes

comments on the source data from original publication

unitless
NCD_a24809A06_nifH_gene

Non-cyanobacterial diazotroph type 'a24809A06', nifH gene

gene copies per liter (L-1)
NCD_aETSP1_nifH_gene

Non-cyanobacterial diazotroph type 'aETSP1', nifH gene

gene copies per liter (L-1)
NCD_Alpha_MH144511_nifH_gene

Non-cyanobacterial diazotroph type 'Alpha_MH144511', nifH gene

gene copies per liter (L-1)
NCD_BAL398_nifH_gene

Non-cyanobacterial diazotroph type 'BAL398', nifH gene

gene copies per liter (L-1)
NCD_BT5667A01_nifH_gene

Non-cyanobacterial diazotroph type 'BT5667A01', nifH gene

gene copies per liter (L-1)
NCD_CB914H4_nifH_gene

Non-cyanobacterial diazotroph type 'CB914H4', nifH gene

gene copies per liter (L-1)
NCD_CE1_45m_12_a_nifH_gene

Non-cyanobacterial diazotroph type 'CE1_45m_12_a', nifH gene

gene copies per liter (L-1)
NCD_OTU0014_Brady_nifH_gene

Non-cyanobacterial diazotroph type 'OTU0014_Brady', nifH gene

gene copies per liter (L-1)
NCD_alpha1_nifH_gene

Non-cyanobacterial diazotroph type 'alpha1', nifH gene

gene copies per liter (L-1)
NCD_alpha2_nifH_gene

Non-cyanobacterial diazotroph type 'alpha2', nifH gene

gene copies per liter (L-1)
NCD_EVHVF_nifH_gene

Non-cyanobacterial diazotroph type 'EVHVF', nifH gene

gene copies per liter (L-1)
NCD_M6411A02_nifH_gene

Non-cyanobacterial diazotroph type 'M6411A02', nifH gene

gene copies per liter (L-1)
NCD_PlanctH08_nifH_gene

Non-cyanobacterial diazotroph type 'PlanctH08', nifH gene

gene copies per liter (L-1)
NCD_PlanctH09_nifH_gene

Non-cyanobacterial diazotroph type 'PlanctH09', nifH gene

gene copies per liter (L-1)
NCD_Cluster_III_nifH_gene

Non-cyanobacterial diazotroph type 'Cluster_III', nifH gene

gene copies per liter (L-1)
NCD_Cluster_III_C_nifH_gene

Non-cyanobacterial diazotroph type 'Cluster_III_C', nifH gene

gene copies per liter (L-1)
NCD_Cluster_III_L_nifH_gene

Non-cyanobacterial diazotroph type 'Cluster_III_L', nifH gene

gene copies per liter (L-1)
NCD_CB907H22_nifH_gene

Non-cyanobacterial diazotroph type 'CB907H22', nifH gene

gene copies per liter (L-1)
NCD_cIII_ETSP_nifH_gene

Non-cyanobacterial diazotroph type 'cIII_ETSP', nifH gene

gene copies per liter (L-1)
NCD_Cluster_3_nifH_gene

Non-cyanobacterial diazotroph type 'Cluster_3', nifH gene

gene copies per liter (L-1)
NCD_M6413A02_nifH_gene

Non-cyanobacterial diazotroph type 'M6413A02', nifH gene

gene copies per liter (L-1)
NCD_P4_nifH_gene

Non-cyanobacterial diazotroph type 'P4', nifH gene

gene copies per liter (L-1)
NCD_D0CY3_nifH_gene

Non-cyanobacterial diazotroph type 'D0CY3', nifH gene

gene copies per liter (L-1)
NCD_ECI27_nifH_gene

Non-cyanobacterial diazotroph type 'ECI27', nifH gene

gene copies per liter (L-1)
NCD_AT2LU_nifH_gene

Non-cyanobacterial diazotroph type 'AT2LU', nifH gene

gene copies per liter (L-1)
NCD_Arc_nifH_gene

Non-cyanobacterial diazotroph type 'Arc', nifH gene

gene copies per liter (L-1)
NCD_P6_nifH_gene

Non-cyanobacterial diazotroph type 'P6', nifH gene

gene copies per liter (L-1)
NCD_g24774A11_nifH_gene

Non-cyanobacterial diazotroph type 'g24774A11', nifH gene

gene copies per liter (L-1)
NCD_gammaA_nifH_gene

Non-cyanobacterial diazotroph type 'gamma A', nifH gene

gene copies per liter (L-1)
NCD_AO15_nifH_gene

Non-cyanobacterial diazotroph type 'AO15', nifH gene

gene copies per liter (L-1)
NCD_BAL354_nifH_gene

Non-cyanobacterial diazotroph type 'BAL354', nifH gene

gene copies per liter (L-1)
NCD_Azo_nifH_gene

Non-cyanobacterial diazotroph type 'Azo', nifH gene

gene copies per liter (L-1)
NCD_BAL281_nifH_gene

Non-cyanobacterial diazotroph type 'BAL281', nifH gene

gene copies per liter (L-1)
NCD_BT19215A01_nifH_gene

Non-cyanobacterial diazotroph type 'BT19215A01', nifH gene

gene copies per liter (L-1)
NCD_CE2_5m_1_g_nifH_gene

Non-cyanobacterial diazotroph type 'CE2_5m_1_g', nifH gene

gene copies per liter (L-1)
NCD_EP19212A1_nifH_gene

Non-cyanobacterial diazotroph type 'EP19212A1', nifH gene

gene copies per liter (L-1)
NCD_ETSP1_nifH_gene

Non-cyanobacterial diazotroph type 'ETSP1', nifH gene

gene copies per liter (L-1)
NCD_ETSP2_nifH_gene

Non-cyanobacterial diazotroph type 'ETSP2', nifH gene

gene copies per liter (L-1)
NCD_ETSP3_nifH_gene

Non-cyanobacterial diazotroph type 'ETSP3', nifH gene

gene copies per liter (L-1)
NCD_Gamma_1_nifH_gene

Non-cyanobacterial diazotroph type 'Gamma_1', nifH gene

gene copies per liter (L-1)
NCD_Gamma_2_nifH_gene

Non-cyanobacterial diazotroph type 'Gamma_2', nifH gene

gene copies per liter (L-1)
NCD_Gamma_3_nifH_gene

Non-cyanobacterial diazotroph type 'Gamma_3', nifH gene

gene copies per liter (L-1)
NCD_Gamma_4_nifH_gene

Non-cyanobacterial diazotroph type 'Gamma_4', nifH gene

gene copies per liter (L-1)
NCD_Gamma_P_nifH_gene

Non-cyanobacterial diazotroph type 'Gamma_P', nifH gene

gene copies per liter (L-1)
NCD_M6433A04_nifH_gene

Non-cyanobacterial diazotroph type 'M6433A04', nifH gene

gene copies per liter (L-1)
NCD_EQF91_nifH_gene

Non-cyanobacterial diazotroph type 'EQF91', nifH gene

gene copies per liter (L-1)
NCD_ALHOU_nifH_gene

Non-cyanobacterial diazotroph type 'ALHOU', nifH gene

gene copies per liter (L-1)
NCD_Vib_nifH_gene

Non-cyanobacterial diazotroph type 'Vib', nifH gene

gene copies per liter (L-1)
NCD_OcSpi_nifH_gene

Non-cyanobacterial diazotroph type 'OcSpi', nifH gene

gene copies per liter (L-1)
NCD_P8_nifH_gene

Non-cyanobacterial diazotroph type 'P8', nifH gene

gene copies per liter (L-1)
NCD_OTU0001_Pseudo_nifH_gene

Non-cyanobacterial diazotroph type 'OTU0001_Pseudo', nifH gene

gene copies per liter (L-1)
NCD_OTU0009_Kleb_nifH_gene

Non-cyanobacterial diazotroph type 'OTU0009_Kleb', nifH gene

gene copies per liter (L-1)
NCD_P3_nifH_gene

Non-cyanobacterial diazotroph type 'P3', nifH gene

gene copies per liter (L-1)
NCD_P7_nifH_gene

Non-cyanobacterial diazotroph type 'P7', nifH gene

gene copies per liter (L-1)
NCD_P1_nifH_gene

Non-cyanobacterial diazotroph type 'P1', nifH gene

gene copies per liter (L-1)
NCD_P2_nifH_gene

Non-cyanobacterial diazotroph type 'P2', nifH gene

gene copies per liter (L-1)
NCD_Alpha_MH144511_nifH_transcript

Non-cyanobacterial diazotroph type 'Alpha_MH144511', nifH transcript

transcript copies per liter (L-1)
NCD_BT5667A01_nifH_transcript

Non-cyanobacterial diazotroph type 'BT5667A01', nifH transcript

transcript copies per liter (L-1)
NCD_OTU0014_Brady_nifH_transcript

Non-cyanobacterial diazotroph type 'OTU0014_Brady', nifH transcript

transcript copies per liter (L-1)
NCD_EVHVF_nifH_transcript

Non-cyanobacterial diazotroph type 'EVHVF', nifH transcript

transcript copies per liter (L-1)
NCD_Cluster_III_nifH_transcript

Non-cyanobacterial diazotroph type 'Cluster_III', nifH transcript

transcript copies per liter (L-1)
NCD_Cluster_III_L_nifH_transcript

Non-cyanobacterial diazotroph type 'Cluster_III_L', nifH transcript

transcript copies per liter (L-1)
NCD_D0CY3_nifH_transcript

Non-cyanobacterial diazotroph type 'D0CY3', nifH transcript

transcript copies per liter (L-1)
NCD_ECI27_nifH_transcript

Non-cyanobacterial diazotroph type 'ECI27', nifH transcript

transcript copies per liter (L-1)
NCD_AT2LU_nifH_transcript

Non-cyanobacterial diazotroph type 'AT2LU', nifH transcript

transcript copies per liter (L-1)
NCD_Arc_nifH_transcript

Non-cyanobacterial diazotroph type 'Arc', nifH transcript

transcript copies per liter (L-1)
NCD_g24774A11_nifH_transcript

Non-cyanobacterial diazotroph type 'g24774A11', nifH transcript

transcript copies per liter (L-1)
NCD_gammaA_nifH_transcript

Non-cyanobacterial diazotroph type 'gamma A', nifH transcript

transcript copies per liter (L-1)
NCD_AO15_nifH_transcript

Non-cyanobacterial diazotroph type 'AO15', nifH transcript

transcript copies per liter (L-1)
NCD_Azo_nifH_transcript

Non-cyanobacterial diazotroph type 'Azo', nifH transcript

transcript copies per liter (L-1)
NCD_ETSP2_nifH_transcript

Non-cyanobacterial diazotroph type 'ETSP2', nifH transcript

transcript copies per liter (L-1)
NCD_Gamma_1_nifH_transcript

Non-cyanobacterial diazotroph type 'Gamma_1', nifH transcript

transcript copies per liter (L-1)
NCD_Gamma_2_nifH_transcript

Non-cyanobacterial diazotroph type 'Gamma_2', nifH transcript

transcript copies per liter (L-1)
NCD_Gamma_3_nifH_transcript

Non-cyanobacterial diazotroph type 'Gamma_3', nifH transcript

transcript copies per liter (L-1)
NCD_Gamma_4_nifH_transcript

Non-cyanobacterial diazotroph type 'Gamma_4', nifH transcript

transcript copies per liter (L-1)
NCD_EQF91_nifH_transcript

Non-cyanobacterial diazotroph type 'EQF91', nifH transcript

transcript copies per liter (L-1)
NCD_ALHOU_nifH_transcript

Non-cyanobacterial diazotroph type 'ALHOU', nifH transcript

transcript copies per liter (L-1)
NCD_Vib_nifH_transcript

Non-cyanobacterial diazotroph type 'Vib', nifH transcript

transcript copies per liter (L-1)
NCD_OTU0001_Pseudo_nifH_transcript

Non-cyanobacterial diazotroph type 'OTU0001_Pseudo', nifH transcript

transcript copies per liter (L-1)
NCD_OTU0009_Kleb_nifH_transcript

Non-cyanobacterial diazotroph type 'OTU0009_Kleb', nifH transcript

transcript copies per liter (L-1)
sst

sea surface temperature; CMAP table: tblSST_AVHRR_OI_NRT. Metadata colocated using CMAP

degrees Celsius (degC)
sss

sea surface salinity; CMAP table: tblSSS_NRT

Practical Salinity Units (PSU)
chl

chlorophyl a; CMAP table: tblCHL_REP

milligrams per cubic meter (mg/m^3)
PAR

photosynthetically active radiation; CMAP table: tblModis_PAR

Einstein per meter squared per day (E m-2 day-1)
POC

particulate organic carbon; CMAP table: tblModis_POC

milligrams per cubic meter (mg/m^3)
wind_speed

wind speed; CMAP table: tblWind_NRT

meters per second (m/s)
wind_stress

wind stress; CMAP table: tblWind_NRT

pascals (Pa)
wind_stress_curl

wind stress curl; CMAP table: tblWind_NRT

pascals (Pa)
sla

sea level anomaly; CMAP table: tblAltimetry_REP

meters (m)
AOD

Aerosol Optical Depth; CMAP table: tblModis_AOD_REP

unitless
NO3

nitrate; CMAP table: tblPisces_NRT

millimoles per cubic meter (mmol/m^3)
PO4

phosphate; CMAP table: tblPisces_NRT

millimoles per cubic meter (mmol/m^3)
Fe

iron; CMAP table: tblPisces_NRT

millimoles per cubic meter (mmol/m^3)
O2

oxygen; CMAP table: tblPisces_NRT

millimoles per cubic meter (mmol/m^3)
Si

silicate (SiO2); CMAP table: tblPisces_NRT

micromoles per liter (umol/L)
PP

primary productivity; CMAP table: tblPisces_NRT

grams per cubic meter per day (g/m^3/day)
PHYC

phytoplankton concentration; CMAP table: tblPisces_NRT

millimoles per cubic meter (mmol/m^3)
DIN

dissolved inorganic nitrogen (DIN); CMAP table: tblDarwin_Nutrient

millimoles (mmol DIN)
FeT

total iron (Fe); CMAP table: tblDarwin_Nutrient

millimoles (mmol Fe)
SiO2

silicate (SiO2); CMAP table: tblDarwin_Nutrient

millimoles (mmol Si)
sea_water_temp_WOA_clim

sea surface temperature; CMAP table: tblWOA_Climatology

degrees Celsius (degC)
density_WOA_clim

sea surface density; CMAP table: tblWOA_Climatology

kilograms per cubic meter (kg/m^3)
salinity_WOA_clim

sea surface salinity; CMAP table: tblWOA_Climatology

Practical Salinity Units (PSU)
nitrate_WOA_clim

nitrate (NO3); CMAP table: tblWOA_Climatology

micromoles per liter (mcmol/L)
phosphate_WOA_clim

phosphate (PO4); CMAP table: tblWOA_Climatology

micromoles per liter (mcmol/L)
silicate_WOA_clim

silicate (SiO2); CMAP table: tblWOA_Climatology

micromoles per liter (mcmol/L)
oxygen_WOA_clim

oxygen; CMAP table: tblWOA_Climatology

milliliters per liter (mL/L)
AOU_WOA_clim

apparent oxygen utilization; CMAP table: tblWOA_Climatology

milliliters per liter (mL/L)
o2sat_WOA_clim

oxygen saturation; CMAP table: tblWOA_Climatology

percent (%)
conductivity_WOA_clim

conductivity; CMAP table: tblWOA_Climatology

Siemens per meter (S m-1)

[ table of contents | back to top ]

Project Information

Collaborative Research: Quantifying N2 fixation rates of noncyanobacterial diazotrophs and environmental controls on their activity (NCDN2FIX)

Coverage: Scripps Institution of Oceanography, Tropical and Subtropical Pacific, Chukchi and Beaufort Sea


NSF Award Abstract:
Nitrogen (N) is an important element in the ocean that limits the growth of the microscopic marine plants, phytoplankton. Estimates suggest N inputs and losses may not be balanced in the modern ocean, and thus an underestimation of N inputs may explain this imbalance. The conversion of gaseous N2 to biologically available N (N2 fixation) is the largest source of new N to the ocean. It is possible that the "missing" N can be explained by identifying new sources of N2 fixation. N2 fixation relies on a group of microorganisms, termed "diazotrophs", that utilize N2 for growth, unlike other marine microorganisms. Diazotrophs fall into two groups, cyanobacterial diazotrophs, which are able to derive energy through photosynthesis, and non-cyanobacterial diazotrophs (NCDs), which require a non-light-based energy source. Next to nothing is known about the ecology and biology of NCDs, except that they are ubiquitous in the ocean and contain the nitrogen fixing gene, but no direct measurements of their N2 fixation activity exist. Recent molecular advances for studying organisms at the single cell level now makes the measurement of N2 fixation by NCDs possible. This study is focused on determining whether marine NCDs are actually fixing N2 in the environment and understanding how their N2 fixation is modulated. Determining if NCD activity is an important missing N source in the global oceans has the potential to fill a critical gap in our understanding of the marine N cycle. This project supports early career STEM researchers including a graduate student and a postdoctoral scientist, as well as undergraduate students through several programs including UCSC's California Alliance for Minority Participation (CAMP).

Nitrogen fixation, the microbial process of converting N2 into biologically available ammonia, is an important source of N in the oceans. Historically, research has focused on the most conspicuous diazotrophs, such as Trichodesmium, but the discovery of unicellular cyanobacterial and non-cyanobacterial diazotrophs (NCDs) in the open ocean revealed a broader diversity than previously thought. Much of what is known about NCDs is restricted to presence, abundance estimates and transcriptional activity from gene surveys. NCDs are globally distributed throughout coastal and oligotrophic environments, however, it is not known whether NCDs supply N to support primary productivity. Measurements of marine NCDs are needed to determine if NCDs are actively fixing N2. This study is focused on measuring single cell NCD N2 fixation rates from a variety of taxa living in well-lit, oxygen-rich coastal and oligotrophic surface waters in the North Pacific and Arctic Oceans. The investigators are using a cultivation-independent technique called geneFISH to microscopically visualize and localize NCDs and measuring the incorporation of 15N2 into single cells using nanoscale secondary ion mass spectrometry. Beyond measuring in situ NCD N2 fixation rates, experiments are being conducted to determine environmental controls on single cell NCD N2 fixation (light, temperature, dissolved organic matter, dissolved inorganic N, and iron). Obtaining single cell NCD N2 fixation rates from a range of taxa, under different experimental conditions and in coastal and oligotrophic environments will provide information to link their presence to N2 fixation activity, determine the quantitative significance of NCDs in the marine environment, and set the stage for their inclusion in biogeochemical models.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]