Zooplankton Community Structure from tows during cruises from Feb-1994 (HOT 52) to Sep-2022 (HOT 339) at Station ALOHA

Website: https://www.bco-dmo.org/dataset/911470
Data Type: Cruise Results
Version: 1
Version Date: 2023-10-13

Project
» [Current] Hawaii Ocean Time-series (HOT): 2018-2023; [Previous] Hawaii Ocean Time-series (HOT): Sustaining ocean ecosystem and climate observations in the North Pacific Subtropical Gyre (HOT)

Programs
» Ocean Carbon and Biogeochemistry (OCB)
» U.S. Joint Global Ocean Flux Study (U.S. JGOFS)
» Ocean Time-series Sites (Ocean Time-series)
ContributorsAffiliationRole
White, Angelicque E.University of Hawaii at Manoa (SOEST)Principal Investigator
Landry, Michael R.University of California-San Diego (UCSD-SIO)Scientist
Fujieki, Lance AUniversity of Hawaii at Manoa (SOEST)Contact
Gerlach, Dana StuartWoods Hole Oceanographic Institution (WHOI BCO-DMO)BCO-DMO Data Manager

Abstract
Mesozooplankton (weak swimmers 0.2-20 mm size) are collected using oblique tows of a one meter squared net (202-µm mesh netting) from the surface to approximately 175 meters depth. The catch is size fractionated by washing through a nested set of net filters and each fraction analyzed for dry weight, C and N.


Dataset Description

Summary
Mesozooplankton (weak swimmers 0.2-20 mm size) are collected using oblique tows of a 1-m
2 net (202-µm mesh netting) from the surface to approximately 175 m depth. The catch is size fractionated by washing through a nested set of net filters and each fraction analyzed for dry weight, C and N.


Methods & Sampling

Principle
Large zooplankton and micronekton play important roles in the export of organic material from surface waters in the open ocean. Global Ocean Flux planning models suggest that the relationship between primary production and passive particulate export flux is strongly influenced by size structure of the zooplankton community (e.g., Paffenhöffer & Knowles, 1979; Small et al., 1987; Frost, 1984). Active vertical migrations also have important implications for the transport and transformation of surface-derived organic particulates to dissolved inorganic constituents at depth (Longhurst & Harrison, 1988; Longhurst et al., 1990; Al-Mutairi & Landry, 2001; Hannides et al., 2008). The zooplankton component of the time-series sampling effort allows such processes to be considered in the interpretation of seasonal and interannual variations in measured flux and the elemental mass balance (e.g., carbon and nitrogen sources and sinks) of the euphotic zone.

At Station ALOHA, 6 net tows are scheduled per cruise. Three midnight (2200 - 0200) and 3 mid-day (1000 - 1400) oblique tows are done using a 1-m2 net (3-m length) with 202-µm mesh Nitex netting. The net is towed obliquely at approximately 1 knot, from the surface to approximately 175 m and then back to the surface. Towing time is approximately 20-30 minutes. The tows are subsequently size-fractioned and analyzed for mesozooplankton wet and dry weight and C and N biomass.

2. Field Operations
2.1. Hardware

Two net systems have been used for routine time-series collections of zooplankton at Station ALOHA. From 1994 to 2005 (Cruises 50-175), we used a 1 meter squared single-net frame with wire attachments and weighting similar to a MOCNESS (Landry et al., 2001; Sheridan & Landry, 2004). A flow meter with a low-speed rotor (Model 2030R, General Oceanics, Miami, FL) was attached across the net opening to measure distance towed, and a temperature-pressure data logger (Model XL-200, Richard Brancker Research, Ottawa, Canada) was fastened to the net frame to measure depth of tow. From HOT cruise 175 to present, the collection procedure was simplified by switching to a 1 meter square diameter ring net, with GO 2030R flow meter and Vemco minilog Time-Depth Recorder. Both frames are fitted with 202 micron filter mesh nets with similar aspect ratios, and they have roughly comparable mouth areas under tow. They are lowered to depth and returned to the surface similarly (by capstan). The main difference is a preceding bridle on the ring net, which may be easier to avoid by larger animals with fast escape responses compared to the side bridles of the original rectangular net. As reported by Valencia et al. (2018), the two net systems were compared in a series of tows on the same cruise, revealing no significant differences in areal estimates of mesozooplankton biomass for either day or night tows (Mann-Whitney test, p > 0.05). They are therefore assumed to be equally efficient samplers in the time series. Since even very large, fast-towed nets (7.3 m2 Isaacs-Kidd mid-water trawl and 96 m2 Cobb nets; 2-4 kts) are unlikely to sample micronekton quantitatively (Kuba, 1970), neither of the small HOT nets is assumed to capture this fraction well.

2.2. Post-recovery processing
At the end of the tow, the outer side of the net is sprayed down with surface seawater to concentrate the animals in the collecting bucket. As soon as possible after collection, the sample is split using a Folsom plankton splitter. Subsamples are taken for preservation and size-fractionationed biomass. Half of the tow is preserved in borate-buffered formaldehyde (0.5% final concentration), with strontium chloride (0.27 mM final concentration) added to aid in preservation of acantharians. The samples are stored in borosilicate-glass jars.
Generally ¼ of the tow is size-fractioned through nested filters of the following mesh sizes: 5-mm, 2-mm, 1-mm, 500-µm, and 200-µm. Each fraction is concentrated onto a 47-mm 200-µm pre-weighed Nitex filter, rinsed with isotonic ammonium formate, placed in a labeled cryotube, and then frozen (liquid nitrogen or -85ºC freezer).

3. Determination of Mass
3.1. Frozen samples are stored at -85ºC until processed. Then, they are defrosted at room temperature in the dark on a paper towel to blot excess moisture. Each sample (which represents a single size-fraction of the tow) is weighed wet on an analytical balance before (total fraction wet weight) and after subsamples of the zooplankton mass are set aside for gut pigment analysis and carbon/nitrogen biomass. The remaining sample is dried at 60ºC, and then reweighed for determination of the fraction's mass (total sample mass is the sum of all fraction masses). The mass of the sample is normalized to the ocean surface area using the volume of seawater filtered through the net as recorded by the flow meter (= volume filtered) and the depth to which the net fished as recorded by the data logger (= depth).

3.2. Calculation of fraction dry weight:
(1)   dwt1 = (wwt1 - fwt) - [(wwt1 - fwt) * %water]
(2)   %water = [(wwt2 - fwt) - (dwt2 - fwt)] / (wwt2 - fwt)  
where:  
dwt1 = fraction dry weight (mg)
dwt2 = fraction dry weight (including filter weight) after all subsamples removed (mg)
wwt1 = fraction wet weight including filter weight (mg)
wwt2 = fraction wet weight including filter weight after all subsamples removed (mg)
fwt  = 47-mm 200-µm filter weight (mg) 
%water = water content of fraction (assume water content is the same for wwt1 and wwt2)

3.3. Calculation of fraction mass:
(3)   mg  (dry wt.) m-2 = dwt1 * depth * (volume filtered)-1 * (fraction of tow)-1
where:
depth  =  towing depth from data logger pressure trace (m)
volume filtered  = volume of seawater filtered through net from flow meter reading (m3)
fraction of tow = fraction of tow concentrated in each size-fraction (e.g., 1/2 or 1/4)

4. Particulate C and N
4.1. Carbon and nitrogen biomass are determined using a CHN Elemental Analyzer (Perkin Elmer Model 2400) on subsamples which have been dried at 60ºC in pre-weighed combusted aluminum foil boats and then weighed on an analytical balance (to 5-places) (see Chapter 10, sections 4 - 8). The dry weight of the sample is the difference between the final balance weight (sample + boat weight) and the pre-weighed boat weight.

4.2. Calculation of carbon and nitrogen content of fraction:
(4)  C (mg) m-2 = C * dwt1 * depth * (volume filtered) - 1 * (fraction of tow)-1
(5)  N (mg) m-2 = N * dwt1 * depth * (volume filtered) - 1 *  (fraction of tow)-1
where:     
C   = concentration of carbon (mg g-1)
N   = concentration of nitrogen (mg g-1)
dwt1   = fraction dry weight (g) (equation 1)
depth  = towing depth from data logger pressure trace (m)
volume filtered  =  volume of seawater filtered through net from flow meter reading (m3) 
fraction of tow  =  fraction of tow concentrated in each size-fraction


[ table of contents | back to top ]

Related Publications

Al-Mutairi, H., & Landry, M. R. (2001). Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton. Deep Sea Research Part II: Topical Studies in Oceanography, 48(8–9), 2083–2103. https://doi.org/10.1016/s0967-0645(00)00174-0 https://doi.org/https://doi.org/10.1016/S0967-0645(00)00174-0
Related Research
Frost, B. W. (1984, September). Utilization of phytoplankton production in the surface layer. In Global ocean flux study: proceedings of a workshop (Vol. 10014, pp. 125-134). National Academy Press Washington, DC.
Related Research
Hannides, C. C. S., Landry, M. R., Benitez-Nelson, C. R., Styles, R. M., Montoya, J. P., & Karl, D. M. (2009). Export stoichiometry and migrant-mediated flux of phosphorus in the North Pacific Subtropical Gyre. Deep Sea Research Part I: Oceanographic Research Papers, 56(1), 73–88. https://doi.org/10.1016/j.dsr.2008.08.003
Related Research
Kuba, D.M. (1970). Sampling midwater fish using the ten-foot Isaacs-Kidd midwater trawl and the Cobb pelagic trawl. [Master’s Thesis, University of Hawaii].
Related Research
Landry, M. R., Al-Mutairi, H., Selph, K. E., Christensen, S., & Nunnery, S. (2001). Seasonal patterns of mesozooplankton abundance and biomass at Station ALOHA. Deep Sea Research Part II: Topical Studies in Oceanography, 48(8–9), 2037–2061. https://doi.org/10.1016/s0967-0645(00)00172-7 https://doi.org/10.1016/S0967-0645(00)00172-7
Methods
Longhurst, A. R., & Glen Harrison, W. (1988). Vertical nitrogen flux from the oceanic photic zone by diel migrant zooplankton and nekton. Deep Sea Research Part A. Oceanographic Research Papers, 35(6), 881–889. https://doi.org/10.1016/0198-0149(88)90065-9
Related Research
Longhurst, A. R., Bedo, A. W., Harrison, W. G., Head, E. J. H., & Sameoto, D. D. (1990). Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep Sea Research Part A. Oceanographic Research Papers, 37(4), 685–694. https://doi.org/10.1016/0198-0149(90)90098-g https://doi.org/10.1016/0198-0149(90)90098-G
Related Research
Ortner, P.B., Cummings, S.R., Aftring, R.P., & Edgerton, H.E. (1979). Silhouette photography of oceanic zooplankton. Nature, 277(5691), 50–51. https://doi.org/10.1038/277050a0
Related Research
Paffenhöfer, G. A. (1979). Ecological implications of fecal pellet size, production and consumption by copepods.
Related Research
Sheridan, C. C., & Landry, M. R. (2004). A nine-year increasing trend in mesozooplankton biomass at the Hawaii Ocean Time-series Station ALOHA. ICES Journal of Marine Science, 61(4), 457–463. https://doi.org/10.1016/j.icesjms.2004.03.023
Methods
Small, L. F., Knauer, G. A., & Tuel, M. D. (1987). The role of sinking fecal pellets in stratified euphotic zones. Deep Sea Research Part A. Oceanographic Research Papers, 34(10), 1705–1712. https://doi.org/10.1016/0198-0149(87)90019-7
Related Research
Strickland, J. D. H. and Parsons, T. R. (1972). A Practical Hand Book of Seawater Analysis. Fisheries Research Board of Canada Bulletin 157, 2nd Edition, 310 p.
Methods

[ table of contents | back to top ]

Parameters

Parameters for this dataset have not yet been identified


[ table of contents | back to top ]

Instruments

Dataset-specific Instrument Name
1 meter square diameter Ring Net
Generic Instrument Name
Ring Net
Generic Instrument Description
A Ring Net is a generic plankton net, made by attaching a net of any mesh size to a metal ring of any diameter. There are 1 meter, .75 meter, .25 meter and .5 meter nets that are used regularly. The most common zooplankton ring net is 1 meter in diameter and of mesh size .333mm, also known as a 'meter net' (see Meter Net).

Dataset-specific Instrument Name
General Oceanics Model 2030R Flow meter
Generic Instrument Name
Mechanical Flowmeter
Dataset-specific Description
A flow meter with a low-speed rotor (Model 2030R, General Oceanics, Miami, FL) was attached across the net opening to measure distance towed
Generic Instrument Description
Manufactured by General Oceanics, a mechanical flow meter is used with plankton tows to determine the volume of water which flows through the net. Flow meters are also used in rivers, estuaries, canals, sewer outfalls, pipes, and harbor entrances to determine water velocity and flow distance information.

Dataset-specific Instrument Name
Temperature-pressure data logger (Model XL-200, Richard Brancker Research)
Generic Instrument Name
Data Logger
Dataset-specific Description
A temperature-pressure data logger (Model XL-200, Richard Brancker Research, Ottawa, Canada) was fastened to the net frame to measure depth of tow.
Generic Instrument Description
Electronic devices that record data over time or in relation to location either with a built-in instrument or sensor or via external instruments and sensors.

Dataset-specific Instrument Name
Vemco Minilog Time-Depth recorder
Generic Instrument Name
Data Logger
Dataset-specific Description
From cruise 175 to present, the collection procedure was simplified by switching to a ring net, with flow meter and Vemco minilog Time-Depth Recorder. 
Generic Instrument Description
Electronic devices that record data over time or in relation to location either with a built-in instrument or sensor or via external instruments and sensors.


[ table of contents | back to top ]

Deployments

HOT_cruises

Website
Platform
Unknown Platform
Report
Start Date
1988-10-31
Description
Since October 1988, the Hawaii Ocean Time-series (HOT) program has investigated temporal dynamics in biology, physics, and chemistry at Stn. ALOHA (22°45' N, 158°W), a deep ocean field site in the oligotrophic North Pacific Subtropical Gyre (NPSG). HOT conducts near monthly ship-based sampling and makes continuous observations from moored instruments to document and study NPSG climate and ecosystem variability over semi-diurnal to decadal time scales.


[ table of contents | back to top ]

Project Information

[Current] Hawaii Ocean Time-series (HOT): 2018-2023; [Previous] Hawaii Ocean Time-series (HOT): Sustaining ocean ecosystem and climate observations in the North Pacific Subtropical Gyre (HOT)


Coverage: North Pacific Subtropical Gyre; 22 deg 45 min N, 158 deg W


Systematic, long-term observations are essential for evaluating natural variability of Earth’s climate and ecosystems and their responses to anthropogenic disturbances.  Since October 1988, the Hawaii Ocean Time-series (HOT) program has investigated temporal dynamics in biology, physics, and chemistry at Stn. ALOHA (22°45' N, 158°W), a deep ocean field site in the oligotrophic North Pacific Subtropical Gyre (NPSG). HOT conducts near monthly ship-based sampling and makes continuous observations from moored instruments to document and study NPSG climate and ecosystem variability over semi-diurnal to decadal time scales. HOT was founded to understand the processes controlling the time-varying fluxes of carbon and associated biogenic elements in the ocean and to document changes in the physical structure of the water column. To achieve these broad objectives, the program has several specific goals:

  1. Quantify time-varying (seasonal to decadal) changes in reservoirs and fluxes of carbon (C) and associated bioelements (nitrogen, oxygen, phosphorus, and silicon).
  2. Identify processes controlling air-sea C exchange, rates of C transformation through the planktonic food web, and fluxes of C into the ocean’s interior.
  3. Develop a climatology of hydrographic and biogeochemical dynamics from which to form a multi-decadal baseline from which to decipher natural and anthropogenic influences on the NPSG ecosystem. 
  4. Provide scientific and logistical support to ancillary programs that benefit from the temporal context, interdisciplinary science, and regular access to the open sea afforded by HOT program occupation of Sta. ALOHA, including projects implementing, testing, and validating new methodologies, models, and transformative ocean sampling technologies.

Over the past 24+ years, time-series research at Station ALOHA has provided an unprecedented view of temporal variability in NPSG climate and ecosystem processes.  Foremost among HOT accomplishments are an increased understanding of the sensitivity of bioelemental cycling to large scale ocean-climate interactions, improved quantification of reservoirs and time varying fluxes of carbon, identification of the importance of the hydrological cycle and its influence on upper ocean biogeochemistry, and the creation of long-term data sets from which the oceanic response to anthropogenic perturbation of elemental cycles may be gauged. 

A defining characteristic of the NPSG is the perennially oligotrophic nature of the upper ocean waters.  This biogeochemically reactive layer of the ocean is where air-sea exchange of climate reactive gases occurs, solar radiation fuels rapid biological transformation of nutrient elements, and diverse assemblages of planktonic organisms comprise the majority of living biomass and sustain productivity.  The prevailing Ekman convergence and weak seasonality in surface light flux, combined with relatively mild subtropical weather and persistent stratification, result in a nutrient depleted upper ocean habitat.  The resulting dearth of bioessential nutrients limits plankton standing stocks and maintains a deep (175 m) euphotic zone.  Despite the oligotrophic state of the NPSG, estimates of net organic matter production at Sta. ALOHA are estimated to range ~1.4 and 4.2 mol C m2 yr1.  Such respectable rates of productivity have highlighted the need to identify processes supplying growth limiting nutrients to the upper ocean.  Over the lifetime of HOT numerous ancillary science projects have leveraged HOT science and infrastructure to examine possible sources of nutrients supporting plankton productivity.  Both physical (mixing, upwelling) and biotic (N2 fixation, vertical migration) processes supply nutrients to the upper ocean in this region, and HOT has been instrumental in demonstrating that these processes are sensitive to variability in ocean climate.

Station ALOHA - site selection and infrastructure
Station ALOHA is a deep water (~4800 m) location approximately 100 km north of the Hawaiian Island of Oahu.  Thus, the region is far enough from land to be free of coastal ocean dynamics and terrestrial inputs, but close enough to a major port (Honolulu) to make relatively short duration (<5 d) near-monthly cruises logistically and financially feasible. Sampling at this site occurs within a 10 km radius around the center of the station. On each HOT cruise, we begin each cruise with a stop at a coastal station south of the island of Oahu, approximately 10 km off Kahe Point (21' 20.6'N, 158' 16.4'W) in 1500 m of water. Station Kahe (termed Station 1 in our database) is used to test equipment and train new personnel before departing for Station ALOHA.  Since August 2004, Station ALOHA has also been home to a surface mooring outfitted for meteorological and upper ocean measurements; this mooring, named WHOTS (also termed Station 50), is a collaborative project between Woods Hole Oceanographic Institution and HOT.  WHOTS provides long-term, high-quality air-sea fluxes as a coordinated part of HOT, contributing to the program’s goals of observing heat, fresh water and chemical fluxes.  In 2011, the ALOHA Cabled Observatory (ACO) became operational.  This instrumented fiber optic cabled observatory provides power and communications to the seabed (4728 m).  The ACO currently configured with an array of thermistors, current meters, conductivity sensors, 2 hydrophones, and a video camera.

HOT Sampling Strategy
HOT relies on the UNOLS research vessel Kilo Moana operated by the University of Hawaii for most of our near-monthly sampling expeditions.  The exact timing of HOT cruises is dictated by the vessel schedule, but to date, our sampling record is not heavily aliased by month, season, or year.  When at Station ALOHA, HOT relies on a variety of sampling strategies to capture the dynamic range of time-variable physical and biogeochemical dynamics inherent to the NPSG ecosystem, including high resolution conductivity-temperature-depth (CTD) profiles; biogeochemical analyses of discrete water samples; in situ vertically profiling bio-optical instrumentation; surface tethered, free-drifting arrays for determinations of primary production and particle fluxes; bottom-moored, deep ocean (2800 m, 4000 m) sediment traps; and oblique plankton net tows.  The suite of core measurements conducted by HOT has remained largely unchanged over the program’s lifetime. On each HOT cruise, samples are collected from the surface ocean to near the sea bed (~4800 m), with the most intensive sampling occurring in the upper 1000 m (typically 13-15 CTD hydrocasts to 1000 m and 2 casts to ~4800 m).  HOT utilizes a “burst” vertical profiling strategy where physical and biogeochemical properties are measured at 3-h intervals over a 36-h period, covering 3 semidiurnal tidal cycles and 1 inertial period (~31 h).  This approach captures energetic high-frequency variability in ocean dynamics due to internal tides around Sta. ALOHA.

Scientific Background and Findings
Central to the mission of the HOT program is continued quantification of ocean carbon inventories and fluxes, with a focus on describing changes in the sizes of these pools and fluxes over time.  HOT routinely quantifies the vertical distributions of the major components of the ocean carbon cycle: dissolved inorganic carbon (DIC), pH, total alkalinity, dissolved organic carbon (DOC), and particulate carbon (PC).  The HOT dataset constitutes one the longest running records from which to gauge the oceanic response to continued anthropogenic changes to the global carbon cycle.  The 24+ year record of ocean carbon measurements at Station ALOHA document that the partial pressure of CO2 (pCO2) in the mixed layer is increasing at a rate (1.92 ± 0.13 microatm yr-1), slightly greater than the trend observed in the atmosphere (1.71 ± 0.03 microatm yr1).  Moreover, mixed layer concentrations of salinity-normalized DIC are increasing at 1.03 ± 0.07 micromol kg1 yr1 (Winn et al., 1998; Dore et al., 2009).  These long-term changes in upper ocean carbon inventories have been accompanied by progressive decreases in seawater pH (-0.0018 ± 0.0001 yr1) and declines in aragonite and calcite saturation states (Dore et al., 2009).  Although the penetration of anthropogenic CO2 is evidenced by long-term decreases in seawater pH throughout the upper 600 m, the rate of acidification at Sta. ALOHA varies with depth.  For example, in the upper mesopelagic waters (~160-310 m) pH is decreasing at nearly twice the rate observed in the surface waters (Dore et al., 2009). Such depth-dependent differences in acidification derive from a combination of regional differences in the time-varying climate signatures imprinted on the ventilation history of the waters, mixing, and changes in biological activity associated with different water masses. 

Superimposed on these progressive long-term trends in the seawater carbonate system are seasonal- to decadal-scale variations in climate and biogeochemical dynamics that ultimately influence CO2 inventories, fluxes, and trends.  Changes in temperature, evaporation-precipitation, and mixing all impart complex, time-varying signatures on the ocean carbon cycle.  For example, interactions among low-frequency climate oscillations such as those linked to the El-Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North Pacific Gyre Oscillation (NPGO) influence the frequency, intensity, and tracks of winter storms in the NPSG (Lukas, 2001), which in turn modifies physical forcing (wind and air-sea heat/water fluxes) and upper ocean response (stratification, currents and mixing).  Such dynamics have important, often non-linear, influences on ocean carbon uptake and biogeochemistry. 
Time-series measurements at HOT have also highlighted complex relationships between ecosystem dynamics and climate-driven physical forcing.  Historically, the abundances and distributions of the resident plankton community of the NPSG were thought to be relatively stable in both space and time.  However, HOT program measurements have identified remarkable temporal (and spatial) heterogeneity in biogeochemical processes and planktonic community structure over seasonal to interannual time scales.  In many cases, climate-forced fluctuations in plankton population dynamics resonate from the base of the picoplankton food web to higher trophic levels (Karl, 1999; Karl et al., 2001; Sheridan and Landry, 2004; Corno et al., 2007; Bidigare et al., 2009).  However, we currently lack a complete mechanistic understanding of the processes underlying variability in NPSG biogeochemistry. 

With continued lengthening of the time series record, HOT measurements have become increasingly useful for identifying low-frequency, interannual- to decadal-scale signals in ocean climate and biogeochemistry.  Upper ocean physical dynamics, nutrient availability, plankton productivity, biomass and community structure, and material export at Sta. ALOHA have all been shown to be sensitive to regional- to basin- scale climate oscillations of the Pacific (Karl et al., 1995; Karl, 1999; Dore et al., 2002; Corno et al., 2007; Bidigare et al., 2009).  One of the most notable examples coincided with major phase shifts in the ENSO, PDO, and NPGO indices in 1997-1998.  Fluctuations in mixing and hydrological forcing accompanying these transitions had important consequences for ocean biogeochemistry and plankton ecology, including changing upper ocean nutrients, concentrations of DIC, and ultimately influencing organic matter export (Dore et al., 2003; Corno et al., 2007; Bidigare et al., 2009). Moreover, these dynamics preceded a shift in plankton community composition, as reflected through nearly 40% increases in concentrations of 19-butanoyoxyfucoxanthin (19-but), 19-hexoyloxyfucoxanthin (19-hex), and fucoxanthin pigment biomarkers used as proxies for pelagophytes, prymnesiophytes, and diatoms, respectively (Bidigare et al., 2009).  Similarly, mesozooplankton biomass increased nearly 50% during this period, suggesting sensitivity of trophodynamic coupling to interannual to subdecadal scale variations in ocean climate. 
HOT also provides some of the only decadal-scale measurements of in situ primary production necessary for assessing seasonal to secular scale change.  Since 1988, depth integrated (0-125 m) inventories of both chlorophyll a and 14C-based estimates of primary production at Sta. ALOHA and BATS have increased significantly (Corno et al., 2007; Saba et al., 2010). However, these long-term trends are punctuated by considerable interannual variability, much of which occurs in the mid- to lower regions of the euphotic zone (>45 m depth), below depths of detection by Earth-orbiting satellites.  The emerging data emphasize the value of in situ measurements for validating remote and autonomous detection of plankton biomass and productivity and demonstrate that detection of potential secular-scale changes in productivity against the backdrop of significant interannual and decadal fluctuations demands a sustained sampling effort.     

Careful long-term measurements at Stn. ALOHA also highlight a well-resolved, though relatively weak, seasonal climatology in upper ocean primary productivity.  Measurements of 14C-primary production document a ~3-fold increase during the summer months (Karl et al., 2012) that coincides with increases in plankton biomass (Landry et al., 2001; Sheridan and Landry, 2004).  Moreover, phytoplankton blooms, often large enough to be detected by ocean color satellites, are a recurrent summertime feature of these waters (White et al., 2007; Dore et al., 2008; Fong et al., 2008). Analyses of ~13-years (1992-2004) of particulate C, N, P, and biogenic Si fluxes collected from bottom-moored deep-ocean (2800 m and 4000 m) sediment traps provide clues to processes underlying these seasonal changes.  Unlike the gradual summertime increase in sinking particle flux observed in the upper ocean (150 m) traps, the deep sea particle flux record depicts a sharply defined summer maximum that accounts for ~20% of the annual POC flux to the deep sea, and appears driven by rapidly sinking diatom biomass (Karl et al., 2012).  Analyses of the 15N isotopic signatures associated with sinking particles at Sta. ALOHA, together with genetic analyses of N2 fixing microorganisms, implicates upper ocean N2 fixation as a major control on the magnitude and efficiency of the biological carbon pump in this ecosystem (Dore et al., 2002; Church et al., 2009; Karl et al., 2012).

Motivating Questions
Science results from HOT continue to raise new, important questions about linkages between ocean climate and biogeochemistry that remain at the core of contemporary oceanography.  Answers have begun to emerge from the existing suite of core program measurements; however, sustained sampling is needed to improve our understanding of contemporary ecosystem behavior and our ability to make informed projections of future changes to this ecosystem. HOT continues to focus on providing answers to some of the questions below:

  1. How sensitive are rates of primary production and organic matter export to short- and long-term climate variability?
  2. What processes regulate nutrient supply to the upper ocean and how sensitive are these processes to climate forcing? 
  3. What processes control the magnitude of air-sea carbon exchange and over what time scales do these processes vary?
  4. Is the strength of the NPSG CO2 sink changing in time?
  5. To what extent does advection (including eddies) contribute to the mixed layer salinity budget over annual to decadal time scales and what are the implications for upper ocean biogeochemistry?
  6. How do variations in plankton community structure influence productivity and material export? 
  7. What processes trigger the formation and demise of phytoplankton blooms in a persistently stratified ocean ecosystem?

References

 



[ table of contents | back to top ]

Program Information

Ocean Carbon and Biogeochemistry (OCB)


Coverage: Global


The Ocean Carbon and Biogeochemistry (OCB) program focuses on the ocean's role as a component of the global Earth system, bringing together research in geochemistry, ocean physics, and ecology that inform on and advance our understanding of ocean biogeochemistry. The overall program goals are to promote, plan, and coordinate collaborative, multidisciplinary research opportunities within the U.S. research community and with international partners. Important OCB-related activities currently include: the Ocean Carbon and Climate Change (OCCC) and the North American Carbon Program (NACP); U.S. contributions to IMBER, SOLAS, CARBOOCEAN; and numerous U.S. single-investigator and medium-size research projects funded by U.S. federal agencies including NASA, NOAA, and NSF.

The scientific mission of OCB is to study the evolving role of the ocean in the global carbon cycle, in the face of environmental variability and change through studies of marine biogeochemical cycles and associated ecosystems.

The overarching OCB science themes include improved understanding and prediction of: 1) oceanic uptake and release of atmospheric CO2 and other greenhouse gases and 2) environmental sensitivities of biogeochemical cycles, marine ecosystems, and interactions between the two.

The OCB Research Priorities (updated January 2012) include: ocean acidification; terrestrial/coastal carbon fluxes and exchanges; climate sensitivities of and change in ecosystem structure and associated impacts on biogeochemical cycles; mesopelagic ecological and biogeochemical interactions; benthic-pelagic feedbacks on biogeochemical cycles; ocean carbon uptake and storage; and expanding low-oxygen conditions in the coastal and open oceans.


U.S. Joint Global Ocean Flux Study (U.S. JGOFS)


Coverage: Global


The United States Joint Global Ocean Flux Study was a national component of international JGOFS and an integral part of global climate change research.

The U.S. launched the Joint Global Ocean Flux Study (JGOFS) in the late 1980s to study the ocean carbon cycle. An ambitious goal was set to understand the controls on the concentrations and fluxes of carbon and associated nutrients in the ocean. A new field of ocean biogeochemistry emerged with an emphasis on quality measurements of carbon system parameters and interdisciplinary field studies of the biological, chemical and physical process which control the ocean carbon cycle. As we studied ocean biogeochemistry, we learned that our simple views of carbon uptake and transport were severely limited, and a new "wave" of ocean science was born. U.S. JGOFS has been supported primarily by the U.S. National Science Foundation in collaboration with the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, the Department of Energy and the Office of Naval Research. U.S. JGOFS, ended in 2005 with the conclusion of the Synthesis and Modeling Project (SMP).


Ocean Time-series Sites (Ocean Time-series)

Coverage: Bermuda, Cariaco Basin, Hawaii


Program description text taken from Chapter 1: Introduction from the Global Intercomparability in a Changing Ocean: An International Time-Series Methods Workshop report published following the workshop held November 28-30, 2012 at the Bermuda Institute of Ocean Sciences. The full report is available from the workshop Web site hosted by US OCB: http://www.whoi.edu/website/TS-workshop/home

Decades of research have demonstrated that the ocean varies across a range of time scales, with anthropogenic forcing contributing an added layer of complexity. In a growing effort to distinguish between natural and human-induced earth system variability, sustained ocean time-series measurements have taken on a renewed importance. Shipboard biogeochemical time-series represent one of the most valuable tools scientists have to characterize and quantify ocean carbon fluxes and biogeochemical processes and their links to changing climate (Karl, 2010; Chavez et al., 2011; Church et al., 2013). They provide the oceanographic community with the long, temporally resolved datasets needed to characterize ocean climate, biogeochemistry, and ecosystem change.

The temporal scale of shifts in marine ecosystem variations in response to climate change are on the order of several decades.  The long-term, consistent and comprehensive monitoring programs conducted by time-series sites are essential to understand large-scale atmosphere-ocean interactions that occur on interannual to decadal time scales.  Ocean time-series represent one of the most valuable tools scientists have to characterize and quantify ocean carbon fluxes and biogeochemical processes and their links to changing climate.

Launched in the late 1980s, the US JGOFS (Joint Global Ocean Flux Study; http://usjgofs.whoi.edu) research program initiated two time-series measurement programs at Hawaii and Bermuda (HOT and BATS, respectively) to measure key oceanographic measurements in oligotrophic waters. Begun in 1995 as part of the US JGOFS Synthesis and Modeling Project, the CARIACO Ocean Time-Series (formerly known as the CArbon Retention In A Colored Ocean) Program has studied the relationship between surface primary production, physical forcing variables like the wind, and the settling flux of particulate carbon in the Cariaco Basin.

The objective of these time-series effort is to provide well-sampled seasonal resolution of biogeochemical variability at a limited number of ocean observatories, provide support and background measurements for process-oriented research, as well as test and validate observations for biogeochemical models. Since their creation, the BATS, CARIACO and HOT time-series site data have been available for use by a large community of researchers.
 
Data from those three US funded, ship-based, time-series sites can be accessed at each site directly or by selecting the site name from the Projects section below.

 



[ table of contents | back to top ]

Funding

Funding SourceAward
NSF Division of Ocean Sciences (NSF OCE)

[ table of contents | back to top ]