Dataset: Partition_coefficients_for_COC
Data Citation:
Santschi, P., Quigg, A., Schwehr, K., Xu, C. (2019) Partition coefficients of the radionuclide into colloidal organic matter from seawater of the west Pacific Ocean and the northern Gulf of Mexico. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2019-04-11 [if applicable, indicate subset used]. doi:10.1575/1912/bco-dmo.764780.1 [access date]
Terms of Use
This dataset is licensed under Creative Commons Attribution 4.0.
If you wish to use this dataset, it is highly recommended that you contact the original principal investigators (PI). Should the relevant PI be unavailable, please contact BCO-DMO (info@bco-dmo.org) for additional guidance. For general guidance please see the BCO-DMO Terms of Use document.
DOI:10.1575/1912/bco-dmo.764780.1
View, Subset and Download Data
BCO-DMO is preparing to move to a new data access system that provides more functionality and features. This system, called ERDDAP, is free and open source with a strong and growing user community. Currently, we are providing the following data access and download capabilities for datasets as we work through our legacy data holdings. These capabilities will soon be available for all data at BCO-DMO:Data Access
- - view the data in an HTML table
- - filter the data before viewing or downloading in a variety of formats
- - download the data with comma-separated values (Excel-ready)
- - download the data with tab-separated values (Excel-ready)
- - download the data as GeoJSON. Try it out at geojson.io
- - download the data as a valid MATLAB file
- - download the data in NetCDF format
- - download the data in Ocean Data View format
Give Us Feedback
Do you have thoughts, questions or constructive feedback about data access at BCO-DMO? Let us know: feedback [at] bco-dmo [dot] org
Project:
Biopolymers as carrier phases for selected natural radionuclides (of Th, Pa, Pb, Po, Be) in diatoms and coccolithophores
(Biopolymers for radionuclides)
Principal Investigator:
Peter Santschi (Texas A&M, Galveston, TAMUG)
Co-Principal Investigator:
Antonietta Quigg (Texas A&M, Galveston, TAMUG)
Kathleen Schwehr (Texas A&M, Galveston, TAMUG)
Chen Xu (Texas A&M, Galveston, TAMUG)
BCO-DMO Data Manager:
Mathew Biddle (Woods Hole Oceanographic Institution, WHOI BCO-DMO)
Version:
1
Version Date:
2019-04-11
Restricted:
No
Validated:
Yes
Current State:
Final no updates expected
Partition coefficients of the radionuclide into colloidal organic matter from seawater of the west Pacific Ocean and the northern Gulf of Mexico
Abstract:
To study the binding mechanisms of radionuclides to organic moieties in colloidal organic matter (COM),marine colloids (1 kDa–0.2 μm) were isolated by cross-flow ultrafiltration from seawater of the west Pacific Ocean and the northern Gulf of Mexico. For the same purpose, exopolymeric substances (EPS) produced by laboratory cultured diatoms were collected as well. In our study areas, colloidal organic carbon (COC) concentrations ranged from 6.5 to 202 μg-C/L in the Pacific Ocean, and were 808 μg-C/L in the Gulf of Mexico. The COM compositions (organic carbon, organic nitrogen, proteins, total hydrolysable amino acids, total polysaccharides, uronic acids, hydroxamate siderophores, hydroquinone) were quantified to examine the relationships between partition coefficients (Kc) of five different radionuclides, 234Th, 233Pa, 210Pb, 210Po and 7Be, and concentration ratios to COC of individual chelating biomolecules that could potentially act as a chelating moiety. The range of partition coefficients (Kc, reported as logKc) of radionuclides between water and the different colloidal materials was 5.12 to 5.85 for 234Th, 5.19 to 6.01 for 233Pa, 4.21 to 4.85 for 210Pb, 4.87 to 5.68 for 210Po, and 4.49 to 4.92 for 7Be, similar to values previously reported for lab and field determinations under different particle concentrations. While any relationship obtained between Kc and abundance of specific moieties could not be taken as proving the existence of colloidal organic binding ligands for the different radionuclides, it could suggest possible organic moieties involved in the scavenging of these natural radionuclides. Together with results from isoelectric focusing of radiolabeled COM, we conclude that binding to different biomolecules is nuclide-specific, with colloidal hydroxamate siderophoric moieties being important for the binding of Th and Pa radionuclides. Hydroquinones/ quinone (HQ/Q) facilitated redox and chelation reactions seem to be involved in the binding of Pa and Be. However, the actual mechanisms are not clear. Individual amino acids, proteins, total polysaccharides and uronic acids did not yield significant relationships with logKc values of the different radionuclides. Nonetheless, our results provide new insights into the relative importance of different potential ligand moieties in COM in the binding and possible scavenging of specific radionuclides in the ocean.